zbMATH — the first resource for mathematics

Finite volume simulation of cavitating flows. (English) Zbl 1134.76392
Summary: We propose a numerical method adapted to the modelling of phase transitions in compressible fluid flows. Pressure laws taking into account phase transitions are complex and lead to difficulties such as the non-uniqueness of entropy solutions. In order to avoid these difficulties, we propose a projection finite volume scheme. This scheme is based on a Riemann solver with a simpler pressure law and an entropy maximization procedure that enables us to recover the original complex pressure law. Several numerical experiments are presented that validate this approach.

76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics, general
Full Text: DOI
[1] Abgrall, R., Generalisation of the roe scheme for the computation of mixture of perfect gases, Rech Aérospat, 6, 31-43, (1988) · Zbl 0662.76097
[2] Andreae S, Ballmann J, Müller S, Voss A. Dynamics of collapsing bubbles near walls. In: Ninth International Conference on Hyperbolic Problems. IGPM, RWTH Aachen; 2002 · Zbl 1059.76537
[3] Barberon T. Modélisation mathématique et numérique de la cavitation dans les écoulements multiphasiques compressibles. PhD thesis, Université de Toulon; 2002
[4] Barberon, T.; Helluy, P.; Rouy, S., Practical computation of axisymmetrical multifluid flows, Int J finite vol, 1, 1, 1-34, (2003)
[5] Bethe H. The theory of shock waves for an arbitrary equation of state. Technical report, US department of commerce; 1942
[6] Callen, H.B., Thermodynamics and an introduction to thermostatistics, (1985), Wiley and Sons New York · Zbl 0989.80500
[7] Chanteperdrix, G.; Villedieu, P.; Vila, J.-P., A compressible model for separated two-phase flows computations, ()
[8] Cocchi, J.-P.; Saurel, R., A Riemann problem based method for the resolution of compressible multimaterial flows, J comput phys, 137, 2, 265-298, (1997) · Zbl 0934.76055
[9] Coquel, F.; Perthame, B., Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics, SIAM J numer anal, 35, 6, 2223-2249, (1998), [electronic] · Zbl 0960.76051
[10] Croisille J-P. Contribution à l’étude theorique et a l’approximation par éléments finis du systéme hyperbolique de la dynamique des gaz multidimensionnelle et multiespèces. PhD thesis, Université Paris VI; 1991
[11] Franc, J.-P., La cavitation: mécanismes physiques et aspects industriels, (1995), Presses Universitaires de Grenoble
[12] Gallouët, T.; Hérard, J.-M.; Seguin, N., Some recent finite volume schemes to compute Euler equations using real gas EOS, Int J numer methods fluids, 39, 12, 1073-1138, (2002) · Zbl 1053.76044
[13] Godlewski, E.; Raviart, P.-A., Numerical approximation of hyperbolic systems of conservation laws, (1996), Springer New York · Zbl 1063.65080
[14] Hayes, B.T.; Lefloch, P.G., Nonclassical shocks and kinetic relations: strictly hyperbolic systems, SIAM J math anal, 31, 5, 941-991, (2000), [electronic] · Zbl 0953.35095
[15] Helluy, P.; Barberon, T., Finite volume simulations of cavitating flows, (), 455-462 · Zbl 1177.76207
[16] Jaouen S. Étude mathématique et numérique de stabilité pour des modèles hydrodynamiques avec transition de phase. PhD thesis, Université Paris VI, November 2001
[17] Karni, S., Multicomponent flow calculations by a consistent primitive algorithm, J comput phys, 112, 1, 31-43, (1994) · Zbl 0811.76044
[18] Koren, B.; Lewis, M.R.; van Brummelen, E.H.; van Leer, B., Riemann-problem and level-set approaches for homentropic two-fluid flow computations, J comput phys, 181, 2, 654-674, (2002) · Zbl 1178.76281
[19] LeFloch, P.G.; Rohde, C., High-order schemes, entropy inequalities, and nonclassical shocks, SIAM J numer anal, 37, 6, 2023-2060, (2000) · Zbl 0959.35117
[20] Lide, D.R., Handbook of chemistry and physics, (2001), CRC Press Boca Raton
[21] Liu, T.P., The Riemann problem for general systems of conservation laws, J diff equat, 56, 218-234, (1975) · Zbl 0297.76057
[22] Menikoff, R.; Plohr, B.J., The Riemann problem for fluid flow of real materials, Rev modern phys, 61, 1, 75-130, (1989) · Zbl 1129.35439
[23] Perthame, B., Boltzmann type schemes for gas dynamics and the entropy property, SIAM J numer anal, 27, 6, 1405-1421, (1990) · Zbl 0714.76078
[24] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J comput phys, 150, 2, 425-467, (1999) · Zbl 0937.76053
[25] Saurel, R.; Abgrall, R., A simple method for compressible multifluid flows, SIAM J sci comput, 21, 3, 1115-1145, (1999) · Zbl 0957.76057
[26] Saurel, R.; Cocchi, J.P.; Butler, P.B., A numerical study of cavitation in the wake of a hypervelocity underwater projectile, AIAA J propul power, 15, 4, 513-522, (1999)
[27] Serre, D., Systemés de lois de conservation I et II, (1996), Diderot Editeur
[28] Toro, E.F., Riemann solvers and numerical methods for fluid dynamics, (1999), Springer New York · Zbl 0923.76004
[29] van Brummelen, E.H.; Koren, B., A pressure-invariant conservative Godunov-type method for barotropic two-fluid flows, J comput phys, 185, 289-308, (2003) · Zbl 1047.76063
[30] Wendroff, B., The Riemann problem for materials with non-convex equations of state: II, general flows, J math anal appl, 38, 640-658, (1972) · Zbl 0287.76049
[31] Weyl, H., Shock waves in arbitrary fluids, Com pure appl math, 103, 2, 103-122, (1949) · Zbl 0035.42004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.