zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Extending scope of robust optimization: comprehensive robust counterparts of uncertain problems. (English) Zbl 1134.90042
Summary: In this paper, we propose a new methodology for handling optimization problems with uncertain data. With the usual robust optimization paradigm, one looks for the decisions ensuring a required performance for all realizations of the data from a given bounded uncertainty set, whereas with the proposed approach, we require also a controlled deterioration in performance when the data is outside the uncertainty set. The extension of robust optimization methodology developed in this paper opens up new possibilities to solve efficiently multi-stage finite-horizon uncertain optimization problems, in particular, to analyze and to synthesize linear controllers for discrete time dynamical systems.

MSC:
90C31Sensitivity, stability, parametric optimization
90C05Linear programming
90C25Convex programming
90C34Semi-infinite programming
93C55Discrete-time control systems
WorldCat.org
Full Text: DOI
References:
[1] Ben-Tal, A., Nemirovski, A.: Stable Truss Topology Design via Semidefinite Programming. SIAM J. Optimization 7, 991--1016 (1997) · Zbl 0899.90133
[2] Ben-Tal, A., Nemirovski, A.: Robust Convex Optimization. Math. Oper. Res. 23, 769--805 (1998) · Zbl 0977.90052
[3] Ben-Tal, A., Nemirovski, A.: Robust solutions to uncertain linear programs. OR Letters 25, 1--13 (1999) · Zbl 0941.90053
[4] Ben-Tal, A., El-Ghaoui, L., Nemirovski, A.: Robust semidefinite programming. In: Semidefinite Programming and Applications, R. Saigal, R., Vandenberghe, L., Wolkowicz, H. (eds), Kluwer Academic Publishers, 2000 · Zbl 0964.90025
[5] Ben-Tal, A., Nemirovski, A.: Robust Optimization --- Methodology and Applications. Math. Program. Series B 92, 453--480 (2002)
[6] Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable Robust Solutions of Uncertain Linear Programs: Math. Program. 99, 351--376 (2004) · Zbl 1089.90037
[7] Ben-Tal, A., Golany, B., Nemirovski, A., Vial, J.-Ph.: Supplier-Retailer Flexible Commitments Contracts: A Robust Optimization Approach. Accepted to Manufacturing & Service Operations Management
[8] Bertsimas, D., Pachamanova, D., Sim, M.: Robust Linear Optimization under General Norms. Oper. Res. Lett. 32, 510--516 (2004) · Zbl 1054.90046
[9] Bertsimas, D., Sim, M.: The price of Robustness. Oper. Res. 52, 35--53 (2004) · Zbl 1165.90565
[10] Bertsimas, D., Sim, M.: Robust Discrete optimization and Network Flows. Math. Program. Series B 98, 49--71 (2003) · Zbl 1082.90067
[11] Bertsekas, D.P., Nedic, A., Ozdaglar, A.E.: Convex Analysis and Optimization, Athena Scientific, 2003 · Zbl 1140.90001
[12] El-Ghaoui, L., Lebret, H.: Robust solutions to least-square problems with uncertain data matrices. SIAM J. Matrix Anal. Appl. 18, 1035--1064 (1997) · Zbl 0891.65039
[13] El-Ghaoui, L., Oustry, F., Lebret, H.: Robust solutions to uncertain semidefinite programs. SIAM J. Optimization 9, 33--52 (1998) · Zbl 0960.93007
[14] Grötschel, M., Lovasz, L., Schrijver, A.: The Ellipsoid Method and Combinatorial Optimization, Springer, Heidelberg, 1988
[15] Soyster, A.L.: Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming. Oper. Res., 1973, pp. 1154--1157 · Zbl 0266.90046