On a multivariate Markov chain model for credit risk measurement.(English)Zbl 1134.91485

Summary: We use credibility theory to estimate credit transition matrices in a multivariate Markov chain model for credit rating. A transition matrix is estimated by a linear combination of the prior estimate of the transition matrix and the empirical transition matrix. These estimates can be easily computed by solving a set of linear programming (LP) problems. The estimation procedure can be implemented easily on Excel spreadsheets without requiring much computational effort and time. The number of parameters is $$O(s^{2}m^{2})$$, where $$s$$ is the dimension of the categorical time series for credit ratings and $$m$$ is the number of possible credit ratings for a security. Numerical evaluations of credit risk measures based on our model are presented.

MSC:

 91B30 Risk theory, insurance (MSC2010)

Excel
Full Text:

References:

 [1] DOI: 10.1093/jjfinec/nbi003 [2] DOI: 10.1111/j.1467-9965.1995.tb00064.x · Zbl 0866.90047 [3] DOI: 10.1016/S0378-4266(02)00283-2 [4] Bernardo JM, Bayesian Theory (2001) [5] Bühlmann H, ASTIN Bull. 4 pp 199– (1967) [6] Cherubini U, Copulas Methods in Finance (2004) [7] DOI: 10.1093/imaman/13.3.187 · Zbl 1040.62108 [8] Ching W, INFORMS J. Comput. (2004) [9] Das, S, Freed, L, Geng, G and Kapadia, N. 2004. Correlated default risk. Working Paper. 2004. Santa Clara University. Available online at:http://www.gloriamundi.org [10] DOI: 10.1017/S0266466603196120 [11] DOI: 10.1214/aoap/1035463324 · Zbl 0868.90008 [12] Elliott RJ, Hidden Markov Models: Estimation and Control (1997) [13] Embrechts P, Risk pp 69– (1999) [14] Fang S, Linear Optimization and Extensions (1993) [15] Gupton, GM, Finger, CC and Bhatia, M. 1997. ”CreditMetrics”. New York: J.P. Morgan. [16] DOI: 10.1016/S0378-4266(02)00268-6 [17] DOI: 10.2307/2329239 [18] DOI: 10.1093/rfs/10.2.481 [19] Kijima M, J. Risk 4 pp 1– (2002) [20] Klugman S, Loss Models: From Data to Decisions (1997) [21] Lee PM, Bayesian Statistics: An Introduction (1997) [22] DOI: 10.3905/jfi.2000.319253 [23] Madan D, Rev. Deriv. Res. 2 pp 121– (1995) [24] DOI: 10.2307/2978814 [25] Mowbray AN, Proc. Causality Actuarial Soc. 1 pp 24– (1914) [26] Patton, A. 2004. Modelling asymmetric exchange rate dependence. Working Paper. 2004. London School of Economics. [27] Robert CP, The Bayesian Choice (2001) [28] DOI: 10.1016/S0167-6687(99)00031-1 · Zbl 0954.62125 [29] Siu TK, North Am. Actuarial J. 5 pp 78– (2001) · Zbl 1083.62544 [30] DOI: 10.1016/S1057-5219(02)00078-9 [31] DOI: 10.1016/S0167-6687(99)00036-0 · Zbl 0951.91032 [32] DOI: 10.1080/13504860410001682669 · Zbl 1106.91053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.