×

zbMATH — the first resource for mathematics

Some new criteria for lag synchronization of chaotic Lur’e systems by replacing variables control. (English) Zbl 1134.93035
Summary: Some new criteria for the chaotic lag synchronization are proposed. At first, lag synchronization scheme for identical master-slave Lur’e systems by replacing variables control and the relevant error system are given, and the relations between absolute stability of the error system and the chaotic lag synchronization are described. Then, based on a quadratic Lyapunov function, two new Lur’e criteria for the above chaotic lag synchronization are proved. Four corresponding frequency domain criteria are further derived by means of Meyer-Kalman-Yacubovich lemma. These frequency domain criteria are applied to analyze the lag synchronization of general master-slave Chua’s circuits so that some ranges of the parameters in which the master-slave Chua’ s circuits achieve chaotic lag synchronization by replacing single-variable control are attained. Finally, some examples are given to verify the theoretical results.

MSC:
93C80 Frequency-response methods in control theory
34K23 Complex (chaotic) behavior of solutions to functional-differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. M. Pecora, T. L. Carroll. Synchronization in chaotic systems [J]. Physical Review Letters, 1990, 64(8): 821 - 824. · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[2] P. Badola, S. S. Tambe, B. D. Kulkami, Driving systems with chaotic signals [J]. Physical Review A, 1992, 46(10): 6735 - 6737. · doi:10.1103/PhysRevA.46.6735
[3] T. L. Carroll, L. M. Pecora, Synchronizing chaotic circuits [J]. IEEE Trans. on Circuits Systems, 1991, 38(4): 453 - 456. · Zbl 1058.37538 · doi:10.1109/31.75404
[4] G. Chen, J. Lü. Analysis, Control and Synchronization on Dynamics of Lorenz System Family [M].Beijing: Science Press, 2003: 215 - 258.
[5] M. Itoh, T. Yang, L. Chua. Conditions for impulsive synchronization of chaotic and hyperchaotic systems [J]. Int. J. Bifurcation and Chaos, 2001, 11(2): 551–560. · Zbl 1090.37520 · doi:10.1142/S0218127401002262
[6] M. Itoh, T. Yang, L. Chua. Experimental study of impulsive synchronization of chaotic and hyperchaotic circuits [J]. Int. J. Bifurcation and Chaos, 1999, 9(7): 1393–1424. · Zbl 0963.34029 · doi:10.1142/S0218127499000961
[7] L. M. Pecora, T. L. Carroll. Driving systems with chaotic signals [J]. Physical Review A, 1991, 44(4): 2374 - 2383. · doi:10.1103/PhysRevA.44.2374
[8] S. Boccaletti, J. Kurths, G. Osipov, et al. The synchronization of chaotic systems [J]. Physics Reports, 2002, 366: 1 - 101. · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0
[9] P. F. Curran, L. O. Chua. Absolute stability theory and the synchronization problem [J]. Int. J. Bifurcation and Chaos, 1997, 7(6): 1375 - 1382. · Zbl 0910.34054 · doi:10.1142/S0218127497001096
[10] X. Wu, Y. Zhao, S. Zhou. Lag synchronization of Lur ’ e systems via replacing variables control [J]. Int. J. Bifurcation and Chaos, Accepted, 2004.
[11] H. Xie. Theory and Application of Absolute Stability [M].Beijing: Science Press, 1986:27 - 100.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.