zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive $L_{2}$ disturbance attenuation control of multi-machine power systems with SMES units. (English) Zbl 1134.93388
Summary: Superconducting magnetic energy storage (SMES) units can be used to enhance the stability of power systems. The key to make good use of the SMES units is to design effective controllers. This paper presents a number of results on the analysis and control of multi-machine power systems with such units via Hamiltonian function method. It has been shown that the multi-machine power systems with SMES units can be made to be a port-controlled Hamiltonian (PCH) system by using a state feedback control, and that the stability of the resulting system can be established. Furthermore, this paper proposes a novel energy-based adaptive $L_{2}$ disturbance attenuation control scheme for the multi-machine systems with SMES units. The control scheme is a decentralized one and consists of two parts: one is an $L_{2}$ disturbance attenuation excitation controller for the generators, and the other is an adaptive $L_{2}$ disturbance attenuation controller for the SMES units. Simulations on a six-machine system with one SMES unit show that the proposed control scheme is very effective.

MSC:
93C95Applications of control theory
93B52Feedback control
93D05Lyapunov and other classical stabilities of control systems
WorldCat.org
Full Text: DOI
References:
[1] Banerjee, S.; Chatterjee, J. K.; Tripathy, S. C.: Application of magnetic energy storage unit as load-frequency stabilizer. IEEE transactions on energy conversion 5, No. 1, 46-51 (1990)
[2] Buckles, W., & Hassenzahl, W. V. (2000). Superconducting magnetic energy storage, IEEE Power Engineering Review, 16-20.
[3] Cheng, D., Xi, Z., Hong, Y., & Qin, H. (1999). Energy-based stabilization in power systems. Proceedings of the 14th IFAC world congress, Beijing, China (Vol. O, pp. 297-303).
[4] Chu, X.; Jiang, X.; Lai, Y.; Wu, X.; Liu, W.: SMES control algorithms for improving customer power quality. IEEE transactions on applied superconductivity 11, No. 2, 1769-1772 (2001)
[5] Escobar, G.; Van Der Schaft, A. J.; Ortega, R.: A Hamiltonian viewpoint in the modelling of switching power converters. Automatica 35, No. 3, 445-452 (1999) · Zbl 0930.94052
[6] Fujimoto, K.; Sugie, T.: Canonical transformations and stabilization of generalized Hamiltonian systems. Systems and control letter 42, 217-227 (2001) · Zbl 1032.93007
[7] Fujimoto, K.; Sugie, T.: Stabilization of Hamiltonian systems with nonholonomic constraints based on time-varying generalized canonical transformations. Systems and control letters 44, 309-319 (2001) · Zbl 0987.93064
[8] Fujimoto, K.; Sakurama, K.; Sugie, T.: Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, No. 12, 2059-2069 (2003) · Zbl 1041.93015
[9] Galaz, M.; Ortega, R.; Bazanella, A. S.; Stankovic, A. M.: An energy-shaping approach to the design of excitation control of synchronous generators. Automatica 39, No. 1, 111-119 (2003) · Zbl 1006.93560
[10] Irie, F.; Takeo, M.; Sato, S.: A field experiment on power line stabilization by a SMES system. IEEE transactions on magnetics 28, 426-429 (1992)
[11] Jiang, X.; Chu, X.: SMES system for study on utility and customer power applications. IEEE transactions on applied superconductivity 11, 1765-1768 (2001)
[12] Juengst, K. P. (1998). SMES progress. Proceedings of 15th international conference on magnet tech (MT-15) (pp. 18-23). Science Press.
[13] Khalil, H.: Nonlinear systems. (1996) · Zbl 0842.93033
[14] Liu, Q. (2002). Energy-based control method and its FACTS applications. Ph.D Dissertation of Tsinghua University, Beijing.
[15] Lu, Q., Sun, Y. (1993). Nonlinear Control of Power Systems, Beijing: Science Press.
[16] Lu, Q.; Sun, Y.; Xu, Z.; Mochizuki, T.: Decentralized nonlinear optimal excitation control. IEEE transactions on power systems 11, No. 4, 1957-1962 (1996)
[17] Luongo, C. A.: Superconducting storage systems: an overview. IEEE transactions on magnetics 32, No. 4, 2214-2223 (1996)
[18] Masahide, H.; Yasunori, M.; Kiichiro, T.: Linearization of generator power swing property by controlling power output of SMES for enhancement of power system stability. IEEE transactions on applied superconductivity 9, No. 2, 338-341 (1999)
[19] Maschowski, J., & Nelles, D. (1992). Power system transient stability enhancement by optimal simultaneous control of active and reactive power. IFAC symposium on power system and power plant control (pp. 271-276). Munich.
[20] Maschke, B. M., & van der Schaft, A. J., 1992. Port-controlled Hamiltonian systems: modelling origins and system theoretic properties. Proceedings of the IFAC symposium on NOLCOS (pp. 282-288). Bordeaux, France.
[21] Maschke, B. M.; Ortega, R.; Van Der Schaft, A. J.: Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE transactions on automatic control 45, No. 8, 1498-1502 (2000) · Zbl 0988.93060
[22] Maschke, B., Ortega, R., van der Schaft, A. J., & Escobar, G. (1999). An energy-based derivation of Lyapunov functions for forced systems with applications to stabilizing control. Proceedings of the 14th IFAC world congress (Vol. E, pp. 409-415). Beijing, China.
[23] Ortega, R.; Galaz, M.; Astolfi, A.; Sun, Y.; Shen, T.: Transient stabilization of multi-machine power systems with nontrivial transfer conductances. IEEE transactions on automatic control 50, No. 1, 60-75 (2005)
[24] Ortega, R.; Van Der Schaft, A. J.; Maschke, B.; Escobar, G.: Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, No. 4, 585-596 (2002) · Zbl 1009.93063
[25] Ortega, R.; Loría, A.; Nicklasson, P. J.; Sira-Ramírez, H.: Passivity-based control of Euler-Lagrangian systems. Communications and control engineering (1998)
[26] Shen, T., Ortega, R., & Lu, Q. et al. (2000). Adaptive L2 disturbance attenuation of Hamiltonian systems with parameter perturbations and application to power systems. Proceedings of the 39th IEEE Conference on Decision and Control (Vol. 5, pp. 4939-4944).
[27] Simo, J. B.; Kamwa, I.: Exploratory assessment of the dynamic behavior of multi-machine system stabilized by a SMES unit. IEEE transactions on power systems 10, No. 3, 1566-1571 (1995)
[28] Sun, Y., Shen, T., & Ortega, R. et al. (2001). Decentralized controller design for multi-machine power systems on Hamiltonian structure. Proceedings of the 40th IEEE conference on decision and control (Vol. 4, pp. 3045-3050), Orlando.
[29] Van Der Schaft, A. J.: L2 gain and passivity techniques in nonlinear control. (1999)
[30] Van Der Schaft, A. J.; Maschke, B. M.: The Hamiltonian formulation of energy conserving physical systems with external ports. Archive für elektronik und übertragungstechnik 49, 362-371 (1995)
[31] Wang, Y.; Cheng, D.; Li, C.: Dissipative Hamiltonian realization and energy-based L2-disturbance attenuation control of multi-machine power systems. IEEE transactions on automatic control 48, No. 8, 1428-1433 (2003)
[32] Wang, Y.; Li, C.; Cheng, D.: Generalized Hamiltonian realization of time-invariant nonlinear systems. Automatica 39, No. 8, 1437-1443 (2003) · Zbl 1041.93014
[33] Wu, C. J.; Lee, Y. S.: Application of simultaneous active and reactive power modulation of superconducting magnetic energy storage unit to damp turbine-generator subsynchronous oscillations. IEEE transactions on energy conversion 8, No. 1, 63-70 (1993)
[34] Xi, Z., & Guan, T. (2001). H\infty control of power systems with the SMES unit. Proceedings of the 20th Chinese control conference (pp. 751-756). Dalian, China.
[35] Xi, Z.; Cheng, D.; Lu, Q.; Mei, S.: Nonlinear decentralized controller design for multi-machine power systems using Hamiltonian function method. Automatica 38, No. 3, 527-534 (2002) · Zbl 1038.93070