×

zbMATH — the first resource for mathematics

Finite determinacy of dicritical singularities in \((\mathbb C^2 ,0)\). (English) Zbl 1135.32033
The article targets those germs of singularities of holomorphic foliations in \(({\mathbb C}^2,0)\) which are regular after one blow up. For such a foliation, one considers those (finitely many) points \(p\) on the exceptional divisor \(E\) of the blow up where the leaf of the lifted foliation is tangent to \(E\) with contact order \(r(p)+1\). Then by a result of Klughertz the set \(\{r(p)\}_p\) is a complete topological invariant of the above germs of foliations.
The analytic classification, which is the subject of the present article, is more complicated. First, one introduces a new analytic invariant, the transverse structure of the foliation, as a finite subgroup of \(\text{Diff}(E)\) (or its conjugacy class by the Möbius transformations of \(E\)). Although in some particular cases this already has an analytic classification power, in general this is not the case. The main result of the article says that the transverse structure together with a finite number of numerical parameters decide whether two such foliations are analytically equivalent. As a consequence, the formal analytic rigidity of this kind of singular foliations is obtained. (Similar result was obtained by Klughertz in her thesis; the present work improves the order of jets involved.)

MSC:
32S65 Singularities of holomorphic vector fields and foliations
37F75 Dynamical aspects of holomorphic foliations and vector fields
PDF BibTeX XML Cite
Full Text: DOI Numdam Numdam EuDML
References:
[1] Calsamiglia, G., Singularidades Dicríticas e Vizinhanças Folheadas de Superfícies de Riemann, (2005)
[2] Camacho, C.; Movasati, H.; Sad, P., Fibred neighbourhoods of curves in surfaces, J. Geom. Anal., 13, 1, 55-66, (2003) · Zbl 1036.32009
[3] Camacho, C.; Sad, P., Invariant varieties through holomorphic vector fields, Ann. Math., 115, 579-595, (1982) · Zbl 0503.32007
[4] Camacho, C.; Sad, P.\(, 16^{\rm o}\) Colóquio Brasileiro de Matemática, Pontos singulares de equações diferenciais analíticas, (1987), IMPA
[5] Cartan, H., Sur LES fonctions de deux variables complexes, Bull. Sci. Math., 54, 99-116, (1930) · JFM 56.0981.04
[6] Cerveau, D.; Mattei, J. F., Formes intégrables holomorphes singulières, Astérisque, 97, 193 pp., (1982) · Zbl 0545.32006
[7] Klughertz, M., Feuilletages holomorphes à singularité isolée ayant une infinité de courbes intégrales, (1988)
[8] Mattei, J. F., Modules de feuilletages holomorphes singuliers. I. équisingularité, Invent. Math., 103, 297-325, (1991) · Zbl 0709.32025
[9] Mattei, J. F.; Moussu, R., Holonomie et intégrales premières, Ann. Sci. École Norm. Sup. (4), 13, 469-523, (1980) · Zbl 0458.32005
[10] Ortiz-Bobadilla; Rosales-Gonzalez; Voronin, Rigidity theorems for generic holomorphic germs of dicritic foliations and vector fields in \(({\mathbb{C}}^2,0),\) Moscow Math. J., 5, 171-206, (2005) · Zbl 1091.32012
[11] Rudin, W., Grundlehren der Mathematischen Wissenschaften, 241, Function theory in the unit ball of \({\mathbb{C}}^n, (1980),\) Springer-Verlag, New York-Berlin · Zbl 0495.32001
[12] Sad, P.; Meziani, R., Singularités nilpotentes et intégrales premières
[13] Suzuki, M., Lecture Notes in Math., 670, 394, Sur LES intégrales premières de certains feuilletages analytiques complexes. fonctions de plusieurs variables complexes, III, 53-79, (1978), Springer, Berlin · Zbl 0391.32017
[14] Teissier, B., Singularity theory (Trieste, 1991), Introduction to curve singularities, 866-893, (1995), World Sci. Publishing, River Edge, NJ · Zbl 0943.14011
[15] Zariski, O., Le problème des modules pour les branches planes, (1975), Centre de Math. de l’École Polytechnique · Zbl 0317.14004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.