zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Symmetric positive solutions for nonlocal boundary value problems of fourth order. (English) Zbl 1135.34310
Summary: The singular fourth-order nonlocal boundary value problem $$\cases u''''(t)=h(t)f(t,u),\quad & 0<t<1,\\ u(0)=u(1)=\int^1_0p(s)u(s)\,ds,\\ u''(0)= u''(1)=\int^1_0q(s)u(s)\,ds\endcases$$ is considered under some suitable conditions concerning the first eigenvalue of the corresponding linear operator, where $p,q\in L_1[0,1]$, $h:(0,1)\to [0,+\infty)$ is continuous, symmetric on $(0,1)$ and may be singular at $t=0$ and $t=1$, $f:[0,1]\times [0,+\infty)\to [0,+\infty)$ is continuous and $f(\cdot,x)$ is symmetric on $[0,1]$ for all $x\to [0,+\infty)$. The existence of at least one symmetric positive solution is obtained by the application of the fixed point index in cones.

MSC:
34B18Positive solutions of nonlinear boundary value problems for ODE
34B16Singular nonlinear boundary value problems for ODE
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
WorldCat.org
Full Text: DOI
References:
[1] Ma, R.; O’regan, D.: Solvability of singular second order m-point boundary value problems, J. math. Anal. appl. 301, 124-134 (2005) · Zbl 1062.34018 · doi:10.1016/j.jmaa.2004.07.009
[2] Ma, R.: Positive solutions for a nonlinear three-point boundary value problem, Electron. J. Differential equations 34, 1-8 (1999) · Zbl 0926.34009
[3] Liu, B.: Positive solutions of fourth-order two-point boundary value problems, Appl. math. Comput. 148, 407-420 (2004) · Zbl 1039.34018 · doi:10.1016/S0096-3003(02)00857-3
[4] Ma, R.: Existence of positive solutions for superlinear semipositone m-point boundary value problems, Proc. edinb. Math. soc. 46, 279-292 (2003) · Zbl 1069.34036 · doi:10.1017/S0013091502000391 · http://journals.cambridge.org/bin/bladerunner?REQUNIQ=1087480707&REQSESS=3723236&118000REQEVENT=&REQINT1=163425&REQAUTH=0
[5] Moshiinsky, M.: Sobre los problemas de condiciones a la frontiera en una dimension de caracteristicas discontinuas, Bol. soc. Mat. mexicana 7, 1-25 (1950)
[6] Timoshenko, S.: Theory of elastic stability, (1961)
[7] Ma, H.: Positive solution for m-point boundary value problems of fourth order, J. math. Anal. appl. 321, 37-49 (2006) · Zbl 1101.34014 · doi:10.1016/j.jmaa.2005.08.015
[8] Il’in, V. A.; Moiseev, E. I.: Nonlocal boundary value problem of the first kind for a Sturm--Liouville operator in its differential and finite difference aspects, J. differential equations 23, 803-810 (1987) · Zbl 0668.34025
[9] Gupta, C. P.: Solvability of a three point nonlinear boundary value problem for a second order differential equation, J. math. Anal. appl. 168, 540-551 (1992) · Zbl 0763.34009 · doi:10.1016/0022-247X(92)90179-H
[10] Ma, R.; Wang, H.: On the existence of positive solutions of fourth-order ordinary differential equations, Appl. anal. 59, 225-231 (1995) · Zbl 0841.34019 · doi:10.1080/00036819508840401
[11] Guo, D.; Lakshmikantham, V.: Nonlinear problems in abstract cones, (1988) · Zbl 0661.47045
[12] Guo, D.; Sun, J.: Nonlinear integral equations, (1987)