×

zbMATH — the first resource for mathematics

Reductions of the Volterra lattice. (English) Zbl 1135.37334
Summary: We exhibit three classes of algebraic constraints which are shown compatible with Volterra lattice.

MSC:
37K60 Lattice dynamics; integrable lattice equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Volterra, V., Leçons sur la théorie mathematique de la lutte sur la vie, (1931), Gautier-Villars Paris · JFM 57.0466.02
[2] Zakharov, V.E.; Musher, S.L.; Rubenchik, A.M., JETP lett., 19, 151, (1974)
[3] Zakharov, V.E.; Musher, S.L.; Rubenchik, A.M., Sov. phys. JETP, 42, 80, (1976)
[4] Manakov, S.V., Sov. phys. JETP, 40, 269, (1975)
[5] Veselov, A.P., Teor. mat. fiz., 154, (1987), (in Russian)
[6] Vereshchagin, V.L., Teor. mat. fiz., 111, 335, (1997), (in Russian)
[7] Bogoyavlenskii, O.I., Math. USSR izv., 31, 435, (1988)
[8] Gürel, B.; Gürses, M.; Habibullin, I., J. math. phys., 36, 6809, (1995)
[9] Habibullin, I.T., Phys. lett. A, 207, 263, (1995)
[10] Adler, V.E.; Habibullin, I.T., J. phys. A: math. gen., 28, 6717, (1995)
[11] Damianou, P.A.; Fernandes, R.L., Rep. math. phys., 50, 361, (2002)
[12] Damianou, P.A.; Kouzaris, S.P., Physica D, 195, 50, (2004)
[13] Sidorov, A.F.; Shapeev, V.P.; Yanenko, N.N., Method of differential constraints and its applications in gas dynamics, (1984), Nauka Novosibirsk, (in Russian) · Zbl 0604.76062
[14] Svinin, A.K., Theor. math. phys., 124, 1211, (2000)
[15] Toda, M., Progr. theor. phys. suppl., 59, 1, (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.