×

Extended Hyers-Ulam stability for Cauchy-Jensen mappings. (English) Zbl 1135.39013

Suppose \(X\) is a normed space, \(Y\) is a Banach space and \(A:X\to Y\) is a mapping. Following J. M. Rassias, and M. J. Rassias [J. Math. Anal. Appl. 281, No. 2, 516–524 (2003; Zbl 1028.39011)], the authors consider the Cauchy equation of Euler-Lagrange type \(A(ax+by)+A(bx+ay)=(a+b)[A(x)+A(y)]\quad a+b\neq 0\) and the Cauchy-Jensen equation of Euler-Lagrange type \(A(ax+by)+A(ax-by)=2aA(y)\), where \(x, y\in X\) and \(a, b\in \mathbb R\), and generalize the stability results controlled by more general mappings. They also prove that under certain conditions a bijective mapping between \(C^*\)-algebras is a \(C^*\)-algebra isomorphism.

MSC:

39B82 Stability, separation, extension, and related topics for functional equations
46L05 General theory of \(C^*\)-algebras
39B52 Functional equations for functions with more general domains and/or ranges

Citations:

Zbl 1028.39011
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aczél J., Lectures on Functional Equations and their Applications (1966)
[2] Bonsall F., Complete Normed Algebras (1973) · Zbl 0271.46039
[3] DOI: 10.1090/S0002-9904-1951-09511-7 · Zbl 0043.32902
[4] DOI: 10.1007/BF02192660 · Zbl 0549.39006
[5] Fenyö I., General Inequalities 5 pp 277– (1987)
[6] DOI: 10.1007/BF01831117 · Zbl 0836.39007
[7] Gajda Z., General Inequalities 5 (1987)
[8] DOI: 10.1006/jmaa.1994.1211 · Zbl 0818.46043
[9] Gǎvruta P., Advances in Equations and Inequalities pp 67– (1999)
[10] DOI: 10.1090/S0002-9947-1978-0511409-2
[11] DOI: 10.1073/pnas.27.4.222 · Zbl 0061.26403
[12] Hyers D.H., Stability of Functional Equations in Several Variables (1998) · Zbl 0907.39025
[13] DOI: 10.1007/BF01830975 · Zbl 0806.47056
[14] Kadison R.V., Mathematica Scandinavica 57 pp 249– (1985)
[15] Kadison R.V., Fundamentals of the Theory of Operator Algebras (1983) · Zbl 0518.46046
[16] Malliavin P., Stochastic Analysis (1997) · Zbl 0878.60001
[17] DOI: 10.1016/0022-1236(82)90048-9 · Zbl 0482.47033
[18] Rassias J.M., Bulletin of Science and Mathematics 108 pp 445– (1984)
[19] DOI: 10.1016/0021-9045(89)90041-5 · Zbl 0672.41027
[20] Rassias J.M., Chinese Journal of Mathematics 20 pp 185– (1992)
[21] Rassias J.M., Discuss. Math. 14 pp 101– (1994)
[22] Rassias J.M., Demonstratio Math. 29 pp 755– (1996)
[23] DOI: 10.1006/jmaa.1997.5856 · Zbl 0928.39014
[24] DOI: 10.1007/s00010-002-8031-7 · Zbl 1009.39024
[25] DOI: 10.1016/S0022-247X(03)00136-7 · Zbl 1028.39011
[26] DOI: 10.1016/j.bulsci.2005.02.001 · Zbl 1081.39028
[27] DOI: 10.1016/j.bulsci.2006.03.011 · Zbl 1112.39025
[28] DOI: 10.1090/S0002-9939-1978-0507327-1
[29] DOI: 10.1006/jmaa.2000.7046 · Zbl 0964.39026
[30] DOI: 10.2307/1971432 · Zbl 0681.47016
[31] Ulam S.M., A Collection of Mathematical Problems (1960)
[32] DOI: 10.1016/0021-9045(92)90140-J · Zbl 0755.41029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.