×

Metric convexity of symmetric cones. (English) Zbl 1135.53014

Using an algebraic construction of symmetric sets, the authors introduce a general notion of a symmetric cone, valid for the finite and infinite dimensional case, and prove that one can deduce the seminegative curvature of the Thompson part metric in this general setting, along with standard inequalities familiar from operator theory. A special case is the symmetric cone arising as the set of invertible squares of a Jordan-Banach algebra (JB-algebra). The authors prove that every symmetric cone from a JB-algebra satisfies a certain convexity property for the Thompson part metric: the distance function between points evolving in time on two geodesics is a convex function. This provides an affirmative answer to a question of K.-H. Neeb [Geom. Dedicata 95, 115–156 (2002; Zbl 1027.58003)].

MSC:

53B40 Local differential geometry of Finsler spaces and generalizations (areal metrics)
53C35 Differential geometry of symmetric spaces
46H70 Nonassociative topological algebras
46B20 Geometry and structure of normed linear spaces

Citations:

Zbl 1027.58003
PDF BibTeX XML Cite
Full Text: Euclid

References:

[1] E.M. Alfsen, F.W. Shultz and E. Størmer: A Gelfand-Neumark theorem for Jordan algebras , Advances in Math. 28 (1978), 11–56. · Zbl 0397.46065
[2] T. Ando: Topics on Operator Inequalities, Lecture Notes Hokkaido Univ., Sapporo, 1978. · Zbl 0388.47024
[3] E. Andruchow, G. Corach and D. Stojanoff: Geometrical significance of Löwner-Heinz inequality , Proc. Amer. Math. Soc. 128 (2000), 1031–1037. JSTOR: · Zbl 0945.46040
[4] E. Andruchow, G. Corach, and D. Stojanoff: Löwner’s theorem and the differential geometry of the space positive operators , · Zbl 0924.46042
[5] W. Ballmann: Lectures on Spaces of Nonpositive Curvature, DMV Seminar 25 , Birkhäuser, Basel, 1995. · Zbl 0834.53003
[6] R. Bhatia: On the exponential metric increasing property , Linear Algebra Appl. 375 (2003), 211–220. · Zbl 1052.15013
[7] R. Braun, W. Kaup and H. Upmeier: A holomorphic characterization of Jordan \(C^*\)-algebras , Math. Z. 161 (1978), 277–290. · Zbl 0385.32002
[8] M.R. Bridson and A. Haefliger: Metric Spaces of Non-Positive Curvature, Grundlehren der Math. Wissenschaft 319 , Springer, Berlin, 1999. · Zbl 0988.53001
[9] G. Corach, H. Porta and L. Recht: Convexity of the geodesic distance on spaces of positive operators , Illinois J. Math. 38 (1994), 87–94. · Zbl 0802.53012
[10] P. Eberlein: Geometry of Non-Positively Curved Manifolds, Chicago Lectures in Math., U. Chicago Press, 1996.
[11] T. Furuta: \(A\geq B\geq 0\) assures \((B^rA^pB^r)^1/q\geq B^(p+2r)/q\) for \(r\geq 0\), \(p\geq 0\), \(q\geq 1\) with \((1+2r)q\geq p+2r\) , Proc. Amer. Math. Soc. 101 (1987), 85–88. JSTOR: · Zbl 0721.47023
[12] H. Hanche-Olsen and E. Størmer: Jordan Operator Algebras, Monographs and Studies in Math. 21 , Pitman, Boston, 1984. · Zbl 0561.46031
[13] S. Lang: Fundamentals of Differential Geometry, Graduate Texts in Math. 191 , Springer, Heidelberg, 1999. · Zbl 0932.53001
[14] J. Lawson and Y. Lim: Symmetric sets with midpoints and algebraically equivalent theories , Results Math. 46 (2004), 37–56. · Zbl 1066.51006
[15] J. Lawson and Y. Lim: Means on dyadic symmetric sets and polar decompositions , Abh. Math. Sem. Univ. Hamburg 74 (2004), 135–150. · Zbl 1146.51301
[16] J. Lawson and Y. Lim: Symmetric spaces with convex metrics , to appear, Forum Math. · Zbl 1169.53333
[17] J. Lawson and Y. Lim: Solving symmetric matrix word equations via symmetric space machinery , Linear Algebra Appl. 414 (2006), 560–569. · Zbl 1105.15013
[18] Y. Lim: Finsler metrics on symmetric cones , Math. Ann. 316 (2000), 379–389. · Zbl 0948.22007
[19] Y. Lim: Geometric means on symmetric cones , Arch. Math. (Basel) 75 (2000), 39–45. · Zbl 0963.15022
[20] Y. Lim: Applications of geometric means on symmetric cones , Math. Ann. 319 (2001), 457\nobreakdash–468. · Zbl 1030.17030
[21] O. Loos: Symmetric Spaces, I: General Theory, W.A. Benjamin, Inc., New York-Amsterdam, 1969. · Zbl 0175.48601
[22] K.-H. Neeb: A Cartan-Hadamard theorem for Banach-Finsler manifolds , Geom. Dedicata 95 (2002), 115–156. · Zbl 1027.58003
[23] R.D. Nussbaum: Hilbert’s Projective Metric and Iterated Nonlinear Maps, Memoirs of Amer. Math. Soc. 391 , 1988. · Zbl 0666.47028
[24] R.D. Nussbaum: Finsler structures for the part metric and Hilbert’s projective metric and applications to ordinary differential equations , Differential Integral Equations 7 (1994), 1649–1707. · Zbl 0844.58010
[25] H. Olsen and E. Størmer: Jordan Operator Algebras, Monographs Stud. Math. 21 , Pitman, London, 1984. · Zbl 0561.46031
[26] S. Shirali and J.W.M. Ford: Symmetry in complex involutory Banach algebras II, Duke Math. J. 37 (1970), 275–280. · Zbl 0183.14202
[27] A.C. Thompson: On certain contraction mappings in a partially ordered vector space , Proc. Amer. Math. soc. 14 (1963), 438–443. JSTOR: · Zbl 0147.34903
[28] K. Tanahashi and A. Uchiyama: The Furuta inequality in Banach \(\ast\)-algebras , Proc. Amer. Math. Soc. 128 (2000), 1691–1695. JSTOR: · Zbl 0949.47016
[29] H. Upmeier: Symmetric Banach Manifolds and Jordan \(C^\ast\)-algebras, North-Holland Mathematics Studies 104 North-Holland, Amsterdam, 1985. · Zbl 0561.46032
[30] J.D.M. Wright: Jordan \(C^*\)-algebras , Michigan Math. J. 24 (1977), 291–302. · Zbl 0384.46040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.