zbMATH — the first resource for mathematics

Testing a homogeneity of stochastic processes. (English) Zbl 1135.62066
Summary: This paper concentrates on modeling data that can be described by a homogeneous or non-homogeneous Poisson process. The goal is to decide whether the intensity of the process is constant or not. In technical practice, e.g., it means to decide whether the reliability of the system remains the same or if it is improving or deteriorating. We assume two situations. First, when only the counts of events are known and, second, when the times between the events are available. Several statistical tests for a detection of a change in an intensity of the Poisson process are described and illustrated by an example. We cover both the case when the time of the change is assumed to be known or unknown.

62M07 Non-Markovian processes: hypothesis testing
62N05 Reliability and life testing
62N03 Testing in survival analysis and censored data
Full Text: Link EuDML
[1] Antoch J., Hušková M.: Estimators of changes. Nonparametrics, Asymptotics an Time Series (S. Ghosh, M. Dekker, New York 1998, pp. 533-578 · Zbl 1069.62515
[2] Antoch J., Hušková, M., Jarušková D.: Off-line quality control. Multivariate Total Quality Control: Foundations and Recent Advances (N. C. Lauro et al., Springer-Verlag, Heidelberg 2002, pp. 1-86
[3] Barlow R. E., Proschan F.: Mathematical Theory of Reliability. Wiley, New York 1964 · Zbl 0874.62111
[4] Chernoff H., Zacks S.: Estimating the current mean of normal distribution which is subjected to changes in time. Ann. Math. Statist. 35 (1964), 999-1018 · Zbl 0218.62033 · doi:10.1214/aoms/1177700517
[5] Cox D. R., Lewis P. A. W.: The Statistical Analysis of Series of Events. Wiley, New York 1966 · Zbl 0195.19602
[6] Csörgő M., Horváth L.: Limit Theorems in Change Point Analysis. Wiley, New York 1997 · Zbl 0884.62023
[7] Embrechts P., Klüppelberg, C., Mikosch T.: Modelling Extremal Events. Springer-Verlag, Heildelberg 1997 · Zbl 0873.62116
[8] Haccou P., Meelis, E., Geer S. van de: The likelihood ratio test for the change point problem for exponentially distributed random variables. Stochastic Process. Appl. 27 (1988), 121-139 · Zbl 0671.62019 · doi:10.1016/0304-4149(87)90009-3
[9] Hájek J., Šidák Z.: Theory of Rank Tests. Academia, Prague 1967 · Zbl 0944.62045
[10] Kander Z., Zacks S.: Test procedures for possible changes in parameters of statistical distributions occurring at unknown time points. Ann. Math. Statist. 37 (1966), 1196-1210 · Zbl 0143.41002 · doi:10.1214/aoms/1177699265
[11] Kiefer J.: K-sample analogues of the Kolmogorov-Smirnov’s and Cramér-von Mises tests. Ann. Math. Statist. 30 (1960), 420-447 · Zbl 0134.36707
[12] Kotz S., Balakrishnan, M., Johnson N. L.: Continuous Multivariate Distributions. Volume 1: Models and Applications. Wiley, New York 2000 · Zbl 0946.62001
[13] Kvaløy J. T., Lindqvist B. H.: TTT-based tests for trend in repairable systems data. Reliability Engineering and System Safety 60 (1998), 13-28
[14] Kvaløy J. T., Lindqvist B. H., Malmedal H.: A statistical test for monotonic and non-monotonic trend in repairable systems. Proc. European Conference on Safety and Reliability - ESREL 2001, Torino 2002, pp. 1563-1570
[15] Sigma: Natural Catastrophes and Major Losef in 1995. Sigma Publ. 2 (1995)
[16] Steinebach. J., Eastwood V. R.: On extreme value asymptotics for increments of renewal processes. J. Statist. Plann. Inference 44 (1995) · Zbl 0831.60060 · doi:10.1016/0378-3758(94)00079-4
[17] Steinebach J., Eastwood V. R.: Extreme value asymptotics for multivariate renewal processes. J. Multivariate Anal. 56 (1996), 284-302 · Zbl 0861.60065 · doi:10.1006/jmva.1996.0015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.