Rémond, Gaël Generalized Vojta inequality. (Inégalité de Vojta généralisée.) (French) Zbl 1136.11043 Bull. Soc. Math. Fr. 133, No. 4, 459-495 (2006). A crucial step in Vojta’s proof of the Mordell conjecture is an inequality on heights. In the paper under review the author presents a generalization of this inequality, more flexible and suitable for many applications. Among these, the author indicates two results: the proof of the Mordell-Lang plus Bogomolov statement for semiabelian varieties conjectured by Poonen [G. Rémond, “Approximation diophantienne sur les variétés semi-abéliennes”, Ann. Sci. Éc. Norm. Supér. (4) 36, No. 2, 191–212 (2003; Zbl 1081.11053)] and the proof of a more uniform statement of the Lang conjecture on abelian varieties [G. Rémond and E. Viada, “Problème de Mordell-Lang modulo certaines sous-variétés abéliennes”, Int. Math. Res. Not. 2003, No. 35, 1915–1931 (2003; Zbl 1072.11038)]. It is to be remarked that the main theorem of the paper is a statement about varieties defined over \({\bar \mathbb Q}\) and does not depend on the number field on which a variety is defined. Reviewer: Roberto Dvornicich (Pisa) Cited in 6 Documents MSC: 11G50 Heights 11G35 Varieties over global fields 14G25 Global ground fields in algebraic geometry Keywords:heights; varieties on global fields. Citations:Zbl 1081.11053; Zbl 1072.11038 PDF BibTeX XML Cite \textit{G. Rémond}, Bull. Soc. Math. Fr. 133, No. 4, 459--495 (2006; Zbl 1136.11043) Full Text: DOI OpenURL