×

Noncommutative Leibniz-Poisson algebras. (English) Zbl 1136.17003

The paper under review proposes a notion of a noncommutative Poisson algebra, where the bracket is that of a Leibniz algebra and the derivation property for the product of two elements occurs in the first (left) entry of the bracket. More specifically, let \(k\) be a commutative ring with unit. Then a Leibniz algebra [J.-L. Loday and T. Pirashvili, Math. Ann. 296, 139–158 (1993; Zbl 0821.17022)] over \(k\) is a \(k\)-module \(A\) together with a \(k\)-linear map \([\;, \;]: A \otimes A \to A\) satisfying the Leibniz identity (which the reviewer writes as)
\[ [[a, b], c] = [[a,c], b] + [a, [b, c]]. \]
A noncommutative Leibniz-Poisson algebra (NLP) is an associative \(k\)-algebra \(P\) together with a bracket \([\;, \;]: P \otimes P \to P\) so that (1) \((P,\;[\;, \;])\) is a Leibniz algebra and
\[ [a \cdot b,c] = a\cdot [b,c] + [a,c]\cdot b . \tag{2} \]
The paper then continues with a description of free NLP-algebras, and definitions of NLP-representations, actions, crossed modules, extensions, operad-dual NLP-algebras, and NLP-algebra cohomology. A representation over an NLP-algebra \(P\) is a \(P\)-\(P\)-bimodule \(M\) together with two \(k\)-linear maps
\[ [\;, \;]: P \otimes M \to M, \qquad [\;, \;]: M \otimes P \to P \]
such that
\[ \begin{aligned} [[p_1,p_2],m] &= [[p_1,m],p_2]+ [p_1,[p_2,m]],\\ [[p_1,m],p_2] &= [[p_1,p_2],m]+ [p_1,[m,p_2]],\\ [[m,p_1],p_2] &= [[m,p_2],p_1]+ [m,[p_1,p_2]],\\ [p_1\cdot m, p_2] &= p_1\cdot [m,p_2]+ [p_1,p_2]\cdot m \\ [m\cdot p_1,p_2] &= m\cdot [p_1,p_2]+ [m,p_2]\cdot p_1,\\ [p_1\cdot p_2,m] &= p_1\cdot [p_2,m]+ [p_1,m]\cdot p_2. \end{aligned} \]
Let \(k\) be a field, \((C^*_H(P,M),\partial_H)\) the chain complex for Hochschild cohomology, and \((C^*_L(P, M), \partial_L)\) the chain complex for Leibniz cohomology, where
\[ C^n_H (P,M)= C^n_L (P,M)= \operatorname{Hom}(P^{\otimes n},M). \]
Let \(M^e = \operatorname{Hom}(P, M)\). The authors define cochain maps \(\beta^*: C^n_L(P,M) \to C^n_H(P,M^e)\), \(n\geq 1\), and \(\alpha^*: C^n_H (P,M) \to C^n_H (P,M^e )\), \( n \geq 1\), where the latter is given in [J. M. Casas and T. Pirashvili, Manuscr. Math. 119, No. 1, 1–15 (2006; Zbl 1100.18005)]. A new cochain complex \(C^*(P,M)\) is defined using the mapping cones on \(\alpha^*\) and \(-\beta^*\). In particular,
\[ C^*(P,M)= \text{cone}(\alpha^*) \coprod_{(i_1,i_2)} \text{cone}(-\beta^*), \]
where \(i_1\) and \(i_2\) are inclusions
\[ \text{cone}(\alpha^*) @>{i_1}>> \overline{C}{}^{*-1}_H (P,M^e) @>{i_2}>> \text{cone}(-\beta^*). \]
By definition the NLP-cohomology of \(P\) with coefficients in \(M\), \(H^*_{\text{NLP}}(P,M)\), is the homology of the cochain complex \(C^*_{\text{NLP}}(P, \, M)\), where
\[ \begin{aligned} C^0_{\text{NLP}}(P,M) &= 0, \\ C^1_{\text{NLP}}(P,M) &= \operatorname{Hom}(P, M), \\ C^n_{\text{NLP}}(P,M) &= C^n(P,M), \qquad n \geq 2 . \end{aligned} \]
It is proved is that if \(P\) is a free NLP-algebra, then \(H^n_{\text{NLP}} (P,{}\_ ) = 0 \) for \(n > 2\).

MSC:

17A32 Leibniz algebras
17B63 Poisson algebras
18D50 Operads (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1007/s00229-005-0551-8 · Zbl 1100.18005 · doi:10.1007/s00229-005-0551-8
[2] Fresse B., C. R. Acad. Sci. Paris, t. 326 pp 1053– (1998)
[3] DOI: 10.1215/S0012-7094-94-07608-4 · Zbl 0855.18006 · doi:10.1215/S0012-7094-94-07608-4
[4] DOI: 10.1016/S0034-4877(97)85919-8 · Zbl 0905.58008 · doi:10.1016/S0034-4877(97)85919-8
[5] Kassel C., Ann. Inst. Fourier, Grenoble 32 pp 119– (1982)
[6] Loday J.-L., Dialgebras. Dialgebras and Related Operads (2001) · Zbl 0970.00010
[7] DOI: 10.1007/BF01445099 · Zbl 0821.17022 · doi:10.1007/BF01445099
[8] Loday J.-L., Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology and Algebraic K-Theory pp 369– (2004)
[9] DOI: 10.1016/0022-4049(72)90008-4 · Zbl 0251.18016 · doi:10.1016/0022-4049(72)90008-4
[10] DOI: 10.2478/BF02476006 · Zbl 1032.16032 · doi:10.2478/BF02476006
[11] DOI: 10.1017/S0013091500026766 · Zbl 0595.18006 · doi:10.1017/S0013091500026766
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.