×

Existence of nodal solutions for Lidstone eigenvalue problems. (English) Zbl 1136.34016

The authors study nodal solutions to the Lidstone eigenvalue problem \[ (-1)^m u^{(2m)}(x)= ra(x) f(u(x)),\qquad 0< x< 1, \]
\[ u^{(2i)}(0)= u^{(2i)}(1)= 0,\qquad i= 0,\dots, m-1. \] Sufficient conditions are obtained for the existence of solutions with exactly \(k-1\) simple zeros in \((0,1)\). These conditions use the eigenvalue \(\lambda_k\) of the corresponding linear problem. Illustrative examples are given.

MSC:

34B15 Nonlinear boundary value problems for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agarwal, R. P.; Wong, P. J.Y., Lidstone polynomials and boundary value problems, Comput. Math. Appl., 17, 1397-1421 (1989) · Zbl 0682.65049
[2] Aftabizadeh, A. R., Existence and uniqueness theorems for fourth-order boundary value problems, J. Math. Anal. Appl., 116, 415-426 (1986) · Zbl 0634.34009
[3] Bai, Z. B.; Ge, W. G., Solutions of \(2 n\) th Lidstone boundary value problems and dependence on higher order derivatives, J. Math. Anal. Appl., 279, 442-450 (2003) · Zbl 1029.34019
[4] Yao, Q. L., On the positive solutions of Lidstone boundary value problems, Appl. Math. Comput., 137, 477-485 (2003) · Zbl 1093.34515
[5] Ma, R. Y.; Thompson, B., Nodal solutions for nonlinear eigenvalue problems, Nonlinear Anal., 59, 707-718 (2004) · Zbl 1059.34013
[6] Elias, U., Eigenvalue problems for the equation \(L y + \lambda p(x) y = 0\), J. Differential Equations, 29, 28-57 (1978) · Zbl 0369.34008
[7] Rabinowitz, P. H., Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7, 487-513 (1971) · Zbl 0212.16504
[8] Crandall, M. G.; Rabinowitz, P. H., Bifurcation from simple eigenvalues, J. Funct. Anal., 8, 321-340 (1971) · Zbl 0219.46015
[9] Agarwal, R. P., Boundary Value Problems for Higher Order Differential Equations (1986), World Scientific: World Scientific Singapore · Zbl 0598.65062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.