zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The Borel transform and its use in the summation of asymptotic expansions. (English) Zbl 1136.34322
Summary: The solution of connection problems on the real line (the $x$ axis) often give asymptotic expansions which are either even or odd. This gives rise to “identically zero” expansions, that is, an asymptotic expansion in which all terms are identically zero at the origin. We show that the Borel transform of these problems have solutions that provide integral representations of the solution. The evaluation of these integrals, as $x\to 0$, allows us to compute the exponentially small term that these “identically zero” expansions represent.
34E10Perturbations, asymptotics (ODE)
34M30Asymptotics, summation methods (ODE in the complex domain)
34M40Stokes phenomena and connection problems (ODE in the complex domain)
Full Text: DOI