zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence, uniqueness, and global attractivity of positive solutions and MLE of the parameters to the logistic equation with random perturbation. (English) Zbl 1136.34324
Noting that population systems are often subject to environmental noise, the authors consider the random logistic equation $$\dot{N}(t)=(r+\alpha\dot{B}(t))N(t)[1-(N(t)/K)],$$ where $N(0)$ is a random variable satisfying $0<N(0)<K$ and $B(t)$ is a 1-dimensional standard Brownian motion. The existence, uniqueness and global attractivity of positive solutions are investigated, and maximum likelihood estimators of the parameters are found.

34F05ODE with randomness
60H10Stochastic ordinary differential equations
34A55Inverse problems of ODE
Full Text: DOI
[1] May R M. Stability and Complexity in Model Ecosystems. Princeton: Princeton University Press, 1973
[2] Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics. London: Kluwer Academic Publishers, 1992 · Zbl 0752.34039
[3] Hale J K. Nonlinear oscillations in equations with delays, nonlinear oscillations in biology. Lect in Appl Math, 17: 157--185 (1979) · Zbl 0433.34052 · doi:10.1007/BFb0064317
[4] Mao X, Marion G, Renshaw E. Environmental Brownian noise suppresses explosions in population dynamics. Stoc Proc and Appl, 97: 95--110 (2002) · Zbl 1058.60046 · doi:10.1016/S0304-4149(01)00126-0
[5] Arnold L. Stochastic Differential Equations: Theory and Applications. New York: Wiley, 1972 · Zbl 0216.45001
[6] Fredman A. Stochastic Differential Equations and Their Applications. San Diego: Academic Press, 1976
[7] Fan J, Zhang C. A reexamination of diffusion estimators with applications to financial model validation. J Am Stat Assoc, 98: 118--134 (2003) · Zbl 1073.62571 · doi:10.1198/016214503388619157
[8] Fan J, Yao Q. Nonlinear Time Series, Nonparametric and Parametric Methods. New York: Springer, 2003 · Zbl 1014.62103
[9] Kendall M G. Advanced Theory of Statistics. Griffin: Charles, 1987 · Zbl 0621.62001
[10] Gilpin M E, Ayala F G. Global models of growth and competition, Proc Nat Acad Scis, 70: 3590--3593 (1973) · Zbl 0272.92016 · doi:10.1073/pnas.70.12.3590
[11] Gilpin M E, Ayala F G. Schoenner’s model and drosophila competition, Theor Popul Biol, 9: 12--14 (1976) · doi:10.1016/0040-5809(76)90031-9