Vasil’eva, A. B. On periodic solutions of a parabolic problem with a small parameter at the derivatives. (Russian, English) Zbl 1136.35306 Zh. Vychisl. Mat. Mat. Fiz. 43, No. 7, 975-986 (2003); translation in Comput. Math. Math. Phys. 43, No. 7, 932-943 (2003). A boundary value problem is considered for a singularly perturbed parabolic equation that involves a small parameter multiplying all derivatives and degenerates into a finite equation when the parameter is equal to zero. An existence theorem is proved for a periodic solution with an internal layer, i.e., for a steplike contrast structure. A theorem on passage to the limit when the small parameter vanishes is proved as well. Reviewer: Andrei Zemskov (Moskva) Cited in 2 Documents MSC: 35B10 Periodic solutions to PDEs 35B25 Singular perturbations in context of PDEs 35K55 Nonlinear parabolic equations Keywords:parabolic singularly perturbed equations; small parameter; periodic solution; passage to the limit; contrast structure PDF BibTeX XML Cite \textit{A. B. Vasil'eva}, Zh. Vychisl. Mat. Mat. Fiz. 43, No. 7, 975--986 (2003; Zbl 1136.35306); translation in Comput. Math. Math. Phys. 43, No. 7, 932--943 (2003) OpenURL