×

The extended Fan’s sub-equation method and its application to KdV-MKdV, BKK and variant Boussinesq equations. (English) Zbl 1136.35451

Summary: An extended Fan’s sub-equation method is used for constructing exact travelling wave solutions of nonlinear partial differential equations (NLPDEs). The key idea of this method is to take full advantage of the general elliptic equation involving five parameters which has more new solutions and whose degeneracies can lead to special sub-equations involving three parameters. More new solutions are obtained for KdV-MKdV, Broer-Kaup-Kupershmidt (BKK) and variant Boussinesq equations. Then we present a technique which not only gives us a clear relation among this general elliptic equation and other sub-equations involving three parameters (Riccati equation, first kind elliptic equation, auxiliary ordinary equation, generalized Riccati equation and so on), but also provides an approach to construct new exact solutions to NLPDEs.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35Q35 PDEs in connection with fluid mechanics

Software:

RATH
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ablowitz, M.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge Univ. Press: Cambridge Univ. Press New York · Zbl 0762.35001
[2] Wadati, M.; Sanuki, H.; Konno, K., Prog. Theor. Phys., 53, 419 (1975) · Zbl 1079.35506
[3] Konno, K.; Wadati, M., Prog. Theor. Phys., 53, 1652 (1975) · Zbl 1079.35505
[4] Matveev, V. A.; Salle, M. A., Darboux Transformation and Solitons (1991), Berlin: Berlin Springer · Zbl 0744.35045
[5] Go, C. H., Soliton Theory and Its Application (1995), Springer: Springer Berlin · Zbl 0834.35003
[6] Hirota, R., Phys. Rev. Lett., 27, 1192 (1971) · Zbl 1168.35423
[7] Wang, M. L., Phys. Lett. A, 199, 169 (1995)
[8] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q., Phys. Lett. A, 289, 69 (2001) · Zbl 0972.35062
[9] Parkes, E. J.; Duffy, B. R., Comput. Phys. Commun., 98, 288 (1996) · Zbl 0948.76595
[10] Li, Z. B.; Liu, Y. P., Comput. Phys. Commun., 148, 256 (2002) · Zbl 1196.35008
[11] Fan, E. G., Phys. Lett. A, 277, 212 (2000) · Zbl 1167.35331
[12] Fan, E. G., Z. Naturforsch. A, 56, 312 (2001)
[13] Yan, Z. Y., Phys. Lett. A, 292, 100 (2001)
[14] Li, B.; Chen, Y.; Zhang, H. Q., Chaos Solitons Fractals, 15, 647 (2003) · Zbl 1038.35095
[15] Yomba, E., Chaos Solitons Fractals, 20, 1135 (2004) · Zbl 1049.35154
[16] Yomba, E., Chaos Solitons Fractals, 21, 75 (2004) · Zbl 1049.35165
[17] Yomba, E., Chaos Solitons Fractals, 22, 321 (2004) · Zbl 1063.35141
[18] Peng, Y. Z., Chin. J. Phys., 41, 103 (2003)
[19] Peng, Y. Z., Phys. Lett. A, 314, 401 (2003) · Zbl 1040.35102
[20] Zhou, Y.; Wang, M.; Wang, Y., Phys. Lett. A, 308, 31 (2003) · Zbl 1008.35061
[21] Yomba, E., Chaos Solitons Fractals, 21, 209 (2004) · Zbl 1046.35105
[22] Liu, J.; Yang, L.; Yang, K., Chaos Solitons Fractals, 20, 1157 (2004) · Zbl 1049.35076
[23] Shen, S.; Pan, Z.; Zhang, J.; Cai’er, Y., Phys. Lett. A, 325, 226 (2004) · Zbl 1161.37342
[24] Zhou, Y.; Wang, M.; Miao, T., Phys. Lett. A, 323, 77 (2004) · Zbl 1118.81480
[25] Sirendaoreji; Jiong, S., Phys. Lett. A, 309, 387 (2003) · Zbl 1011.35035
[26] Xie, F.; Zhang, Y.; Lü, Z., Chaos Solitons Fractals, 24, 257 (2005) · Zbl 1067.35095
[27] Fan, E. G., Chaos Solitons Fractals, 16, 839 (2003) · Zbl 1030.35136
[28] Fan, E. G.; Hon, Y., Chaos Solitons Fractals, 15, 559 (2003) · Zbl 1031.76008
[29] Chen, Y.; Wang, Q.; Li, B., Chaos Solitons Fractals, 22, 675 (2004) · Zbl 1062.37094
[30] Junqi, H., Chaos Solitons Fractals, 23, 391 (2005) · Zbl 1069.35065
[31] Chen, Y.; Wang, Q., Chaos Solitons Fractals, 23, 801 (2005) · Zbl 1069.35054
[32] G. Xu, Z. Li, Exact travelling wave solutions of the Whitham-Broer-Kaup and Broer-Kaup-Kupershmidt equations, Chaos Solitons Fractals, in press; G. Xu, Z. Li, Exact travelling wave solutions of the Whitham-Broer-Kaup and Broer-Kaup-Kupershmidt equations, Chaos Solitons Fractals, in press · Zbl 1069.35067
[33] Wadati, M., J. Phys. Soc. Jpn., 38, 673 (1975) · Zbl 1334.82022
[34] Mohamad, M. N., Math. Meth. Appl. Sci., 15, 73 (1992) · Zbl 0741.35071
[35] Dubrovsky, V. G.; Konopelchenko, E. G., J. Phys. A, 27, 4619 (1994) · Zbl 0842.35103
[36] Lou, S. Y.; Hu, X. B., J. Math. Phys. A, 38, 6401 (1997) · Zbl 0898.58029
[37] Fu, Z., Phys. Lett. A, 299, 507 (2002)
[38] Yan, Z. Y.; Zhang, H. Q., Phys. Lett. A, 252, 251 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.