Yomba, Emmanuel The extended Fan’s sub-equation method and its application to KdV-MKdV, BKK and variant Boussinesq equations. (English) Zbl 1136.35451 Phys. Lett., A 336, No. 6, 463-476 (2005). Summary: An extended Fan’s sub-equation method is used for constructing exact travelling wave solutions of nonlinear partial differential equations (NLPDEs). The key idea of this method is to take full advantage of the general elliptic equation involving five parameters which has more new solutions and whose degeneracies can lead to special sub-equations involving three parameters. More new solutions are obtained for KdV-MKdV, Broer-Kaup-Kupershmidt (BKK) and variant Boussinesq equations. Then we present a technique which not only gives us a clear relation among this general elliptic equation and other sub-equations involving three parameters (Riccati equation, first kind elliptic equation, auxiliary ordinary equation, generalized Riccati equation and so on), but also provides an approach to construct new exact solutions to NLPDEs. Cited in 1 ReviewCited in 50 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 35Q35 PDEs in connection with fluid mechanics Software:RATH PDF BibTeX XML Cite \textit{E. Yomba}, Phys. Lett., A 336, No. 6, 463--476 (2005; Zbl 1136.35451) Full Text: DOI References: [1] Ablowitz, M.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge Univ. Press: Cambridge Univ. Press New York · Zbl 0762.35001 [2] Wadati, M.; Sanuki, H.; Konno, K., Prog. Theor. Phys., 53, 419 (1975) [3] Konno, K.; Wadati, M., Prog. Theor. Phys., 53, 1652 (1975) [4] Matveev, V. A.; Salle, M. A., Darboux Transformation and Solitons (1991), Berlin: Berlin Springer · Zbl 0744.35045 [5] Go, C. H., Soliton Theory and Its Application (1995), Springer: Springer Berlin [6] Hirota, R., Phys. Rev. Lett., 27, 1192 (1971) [7] Wang, M. L., Phys. Lett. A, 199, 169 (1995) [8] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q., Phys. Lett. A, 289, 69 (2001) [9] Parkes, E. J.; Duffy, B. R., Comput. Phys. Commun., 98, 288 (1996) [10] Li, Z. B.; Liu, Y. P., Comput. Phys. Commun., 148, 256 (2002) [11] Fan, E. G., Phys. Lett. A, 277, 212 (2000) [12] Fan, E. G., Z. Naturforsch. A, 56, 312 (2001) [13] Yan, Z. Y., Phys. Lett. A, 292, 100 (2001) [14] Li, B.; Chen, Y.; Zhang, H. Q., Chaos Solitons Fractals, 15, 647 (2003) [15] Yomba, E., Chaos Solitons Fractals, 20, 1135 (2004) [16] Yomba, E., Chaos Solitons Fractals, 21, 75 (2004) [17] Yomba, E., Chaos Solitons Fractals, 22, 321 (2004) [18] Peng, Y. Z., Chin. J. Phys., 41, 103 (2003) [19] Peng, Y. Z., Phys. Lett. A, 314, 401 (2003) [20] Zhou, Y.; Wang, M.; Wang, Y., Phys. Lett. A, 308, 31 (2003) [21] Yomba, E., Chaos Solitons Fractals, 21, 209 (2004) [22] Liu, J.; Yang, L.; Yang, K., Chaos Solitons Fractals, 20, 1157 (2004) [23] Shen, S.; Pan, Z.; Zhang, J.; Cai’er, Y., Phys. Lett. A, 325, 226 (2004) [24] Zhou, Y.; Wang, M.; Miao, T., Phys. Lett. A, 323, 77 (2004) [25] Sirendaoreji; Jiong, S., Phys. Lett. A, 309, 387 (2003) [26] Xie, F.; Zhang, Y.; Lü, Z., Chaos Solitons Fractals, 24, 257 (2005) [27] Fan, E. G., Chaos Solitons Fractals, 16, 839 (2003) [28] Fan, E. G.; Hon, Y., Chaos Solitons Fractals, 15, 559 (2003) [29] Chen, Y.; Wang, Q.; Li, B., Chaos Solitons Fractals, 22, 675 (2004) [30] Junqi, H., Chaos Solitons Fractals, 23, 391 (2005) [31] Chen, Y.; Wang, Q., Chaos Solitons Fractals, 23, 801 (2005) [33] Wadati, M., J. Phys. Soc. Jpn., 38, 673 (1975) [34] Mohamad, M. N., Math. Meth. Appl. Sci., 15, 73 (1992) [35] Dubrovsky, V. G.; Konopelchenko, E. G., J. Phys. A, 27, 4619 (1994) [36] Lou, S. Y.; Hu, X. B., J. Math. Phys. A, 38, 6401 (1997) [37] Fu, Z., Phys. Lett. A, 299, 507 (2002) [38] Yan, Z. Y.; Zhang, H. Q., Phys. Lett. A, 252, 251 (1999) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.