Li, Songxiao; Stević, Stevo Riemann–Stieltjes operators on Hardy spaces in the unit ball of \(\mathbb C^ n\). (English) Zbl 1136.47023 Bull. Belg. Math. Soc. - Simon Stevin 14, No. 4, 621-628 (2007). Let \(B\) be the open unit ball in \({\mathbb C}^{n}\) and \(f:B\rightarrow {\mathbb C}^{1}\) be a holomorphic function with the Taylor expansion \(f(z)=\sum_{| \beta| \geq0}a_{\beta}z^{\beta}\). Denote by \(({\mathfrak R}f)(z)=\sum_{| \beta| \geq0}| \beta| a_{\beta}z^{\beta}\) the radial derivative of \(f\). The authors study the integral operators \[ (T_{g}f)(z)=\int_{0}^{1}f(tz)({\mathfrak R}g)(tz)\,\frac{dt}{t} \quad \text{and} \quad (L_{g}f)(z)=\int_{0}^{1}({\mathfrak R}f)(tz)g(tz)\,\frac{dt}{t}, \quad z\in B. \]The boundedness and compactness of the operators \(T_{g}\) and \(L_{g}\) on the Hardy space \(H^{2}\) in the unit ball are discussed. Reviewer: Vladimir S. Pilidi (Rostov-na-Donu) Cited in 1 ReviewCited in 32 Documents MSC: 47B38 Linear operators on function spaces (general) 32A35 \(H^p\)-spaces, Nevanlinna spaces of functions in several complex variables 46E15 Banach spaces of continuous, differentiable or analytic functions Keywords:Riemann-Stieltjes operator; Hardy space; BMOA space PDF BibTeX XML Cite \textit{S. Li} and \textit{S. Stević}, Bull. Belg. Math. Soc. - Simon Stevin 14, No. 4, 621--628 (2007; Zbl 1136.47023) Full Text: Euclid OpenURL