zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Convergence to infinitely divisible distributions with finite variance for some weakly dependent sequences. (English) Zbl 1136.60308
Summary: We continue the investigation started in a previous paper [Stochastic Processes Appl. 115, No. 5, 737--768 (2005; Zbl 1070.60033)], on weak convergence to infinitely divisible distributions with finite variance. In the present paper, we study this problem for some weakly dependent random variables, including in particular associated sequences. We obtain minimal conditions expressed in terms of individual random variables. As in the i.i.d. case, we describe the convergence to the Gaussian and the purely non-Gaussian parts of the infinitely divisible limit. We also discuss the rate of Poisson convergence and emphasize the special case of Bernoulli random variables. The proofs are mainly based on Lindeberg’s method.

MSC:
60E07Infinitely divisible distributions; stable distributions
60F05Central limit and other weak theorems
WorldCat.org
Full Text: DOI Numdam EuDML
References:
[1] A. Araujo and E. Giné , The central limit theorem for real and Banach space valued random variables . Wiley, New York ( 1980 ). MR 576407 · Zbl 0457.60001
[2] A.D. Barbour , L. Holst and S. Janson , Poisson approximation . Clarendon Press, Oxford ( 1992 ). MR 1163825 | Zbl 0746.60002 · Zbl 0746.60002
[3] R.E. Barlow and F. Proschan , Statistical Theory of Reliability and Life: Probability Models . Silver Spring, MD ( 1981 ). · Zbl 0379.62080
[4] T. Birkel , On the convergence rate in the central limit theorem for associated processes . Ann. Probab. 16 ( 1988 ) 1685 - 1698 . Article | Zbl 0658.60039 · Zbl 0658.60039 · doi:10.1214/aop/1176991591 · http://minidml.mathdoc.fr/cgi-bin/location?id=00239187
[5] A.V. Bulinski , On the convergence rates in the CLT for positively and negatively dependent random fields , in Probability Theory and Mathematical Statistics, I.A. Ibragimov and A. Yu. Zaitsev Eds. Gordon and Breach Publishers, Singapore, ( 1996 ) 3 - 14 . Zbl 0873.60011 · Zbl 0873.60011
[6] L.H.Y. Chen , Poisson approximation for dependent trials . Ann. Probab. 3 ( 1975 ) 534 - 545 . Article | Zbl 0335.60016 · Zbl 0335.60016 · doi:10.1214/aop/1176996359 · http://minidml.mathdoc.fr/cgi-bin/location?id=00240563
[7] J.T. Cox and G. Grimmett , Central limit theorems for associated random variables and the percolation models . Ann. Probab. 12 ( 1984 ) 514 - 528 . Article | Zbl 0536.60094 · Zbl 0536.60094 · doi:10.1214/aop/1176993303 · http://minidml.mathdoc.fr/cgi-bin/location?id=00239643
[8] J. Dedecker and S. Louhichi , Conditional convergence to infinitely divisible distributions with finite variance . Stochastic Proc. Appl. (To appear.) MR 2132596 | Zbl 1070.60033 · Zbl 1070.60033 · doi:10.1016/j.spa.2004.12.006
[9] P. Doukhan and S. Louhichi , A new weak dependence condition and applications to moment inequalities . Stochastic Proc. Appl. 84 ( 1999 ) 313 - 342 . Zbl 0996.60020 · Zbl 0996.60020 · doi:10.1016/S0304-4149(99)00055-1
[10] J. Esary , F. Proschan and D. Walkup , Association of random variables with applications . Ann. Math. Statist. 38 ( 1967 ) 1466 - 1476 . Article | Zbl 0183.21502 · Zbl 0183.21502 · doi:10.1214/aoms/1177698701 · http://minidml.mathdoc.fr/cgi-bin/location?id=00235040
[11] C. Fortuin , P. Kastelyn and J. Ginibre , Correlation inequalities on some ordered sets . Comm. Math. Phys. 22 ( 1971 ) 89 - 103 . Article | Zbl 0346.06011 · Zbl 0346.06011 · doi:10.1007/BF01651330 · http://minidml.mathdoc.fr/cgi-bin/location?id=00003488
[12] B.V. Gnedenko and A.N. Kolmogorov , Limit distributions for sums of independent random variables . Addison-Wesley Publishing Company ( 1954 ). MR 62975 | Zbl 0056.36001 · Zbl 0056.36001
[13] L. Holst and S. Janson , Poisson approximation using the Stein-Chen method and coupling: number of exceedances of Gaussian random variables . Ann. Probab. 18 ( 1990 ) 713 - 723 . Article | Zbl 0713.60047 · Zbl 0713.60047 · doi:10.1214/aop/1176990854 · http://minidml.mathdoc.fr/cgi-bin/location?id=00239030
[14] T. Hsing , J. Hüsler and M.R. Leadbetter , On the Exceedance Point Process for a Stationary Sequence . Probab. Theory Related Fields 78 ( 1988 ) 97 - 112 . Zbl 0619.60054 · Zbl 0619.60054 · doi:10.1007/BF00718038
[15] W.N. Hudson , H.G. Tucker and J.A Veeh , Limit distributions of sums of m-dependent Bernoulli random variables . Probab. Theory Related Fields 82 ( 1989 ) 9 - 17 . Zbl 0672.60033 · Zbl 0672.60033 · doi:10.1007/BF00340009
[16] A. Jakubowski , Minimal conditions in $p$-stable limit theorems . Stochastic Proc. Appl. 44 ( 1993 ) 291 - 327 . Zbl 0771.60015 · Zbl 0771.60015 · doi:10.1016/0304-4149(93)90029-4
[17] A. Jakubowski , Minimal conditions in $p$-stable limit theorems -II . Stochastic Proc. Appl. 68 ( 1997 ) 1 - 20 . Zbl 0890.60024 · Zbl 0890.60024 · doi:10.1016/S0304-4149(97)00014-8
[18] K. Joag-Dev and F. Proschan , Negative association of random variables, with applications . Ann. Statist. 11 ( 1982 ) 286 - 295 . Article | Zbl 0508.62041 · Zbl 0508.62041 · doi:10.1214/aos/1176346079 · http://minidml.mathdoc.fr/cgi-bin/location?id=00242440
[19] O. Kallenberg , Random Measures . Akademie-Verlag, Berlin ( 1975 ). MR 431372 | Zbl 0345.60031 · Zbl 0345.60031
[20] M. Kobus , Generalized Poisson Distributions as Limits of Sums for Arrays of Dependent Random Vectors . J. Multi. Analysis ( 1995 ) 199 - 244 . Zbl 0821.60032 · Zbl 0821.60032 · doi:10.1006/jmva.1995.1011
[21] M.R Leadbetter , G. Lindgren and H. Rootzén , Extremes and related properties of random sequences and processes . New York, Springer ( 1983 ). MR 691492 | Zbl 0518.60021 · Zbl 0518.60021
[22] C.M. Newman , Asymptotic independence and limit theorems for positively and negatively dependent random variables , in Inequalities in Statistics and Probability, Y.L. Tong Ed. IMS Lecture Notes-Monograph Series 5 ( 1984 ) 127 - 140 .
[23] C.M. Newman , Y. Rinott and A. Tversky , Nearest neighbors and voronoi regions in certain point processes . Adv. Appl. Prob. 15 ( 1983 ) 726 - 751 . Zbl 0527.60050 · Zbl 0527.60050 · doi:10.2307/1427321
[24] C.M. Newman and A.L. Wright , An invariance principle for certain dependent sequences . Ann. Probab. 9 ( 1981 ) 671 - 675 . Article | Zbl 0465.60009 · Zbl 0465.60009 · doi:10.1214/aop/1176994374 · http://minidml.mathdoc.fr/cgi-bin/location?id=00239930
[25] V.V. Petrov , Limit theorems of probability theory: sequences of independent random variables . Clarendon Press, Oxford ( 1995 ). MR 1353441 | Zbl 0826.60001 · Zbl 0826.60001
[26] L. Pitt , Positively Correlated Normal Variables are Associated . Ann. Probab. 10 ( 1982 ) 496 - 499 . Article | Zbl 0482.62046 · Zbl 0482.62046 · doi:10.1214/aop/1176993872 · http://minidml.mathdoc.fr/cgi-bin/location?id=00239859
[27] E. Rio , Théorie asymptotique des processus aléatoires faiblement dépendants . Collection Mathématiques $\&$ Applications. Springer, Berlin 31 ( 2000 ). MR 2117923 | Zbl 0944.60008 · Zbl 0944.60008
[28] K.I. Sato , Lévy processes and infinitely divisible distributions . Cambridge studies in advanced mathematics 68 ( 1999 ). MR 1739520 | Zbl 0973.60001 · Zbl 0973.60001
[29] C.M. Stein , A bound for the error in the normal approximation to the distribution of a sum of dependent random variables , in Proc. Sixth Berkeley Symp. Math. Statist. Probab. Univ. California Press 3 ( 1971 ) 583 - 602 . Article | Zbl 0278.60026 · Zbl 0278.60026 · http://minidml.mathdoc.fr/cgi-bin/location?id=00246952