zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the bounded laws of iterated logarithm in Banach space. (English) Zbl 1136.60314
Summary: In the present paper, by using the inequality due to Talagrand’s isoperimetric method, several versions of the bounded law of iterated logarithm for a sequence of independent Banach space valued random variables are developed and the upper limits for the non-random constant are given.
MSC:
60F05Central limit and other weak theorems
60B12Limit theorems for vector-valued random variables (infinite-dimensional case)
60F99Limit theorems (probability)
WorldCat.org
Full Text: DOI Numdam EuDML
References:
[1] A. de Acosta , Inequalities for $B$-valued random variables with application to the law of large numbers . Ann. Probab. 9 ( 1981 ) 157 - 161 . Article | Zbl 0449.60002 · Zbl 0449.60002 · doi:10.1214/aop/1176994517 · http://minidml.mathdoc.fr/cgi-bin/location?id=00239986
[2] B. von Bahr and C. Esseen , Inequalities for the $r$th absolute moments of a sum of random variables, $1\le r\le 2$ . Ann. math. Statist. 36 ( 1965 ) 299 - 303 . Article | Zbl 0134.36902 · Zbl 0134.36902 · doi:10.1214/aoms/1177700291 · http://minidml.mathdoc.fr/cgi-bin/location?id=00235665
[3] X. Chen , On the law of iterated logarithm for independent Banach space valued random variables . Ann. Probab. 21 ( 1993 ) 1991 - 2011 . Article | Zbl 0791.60005 · Zbl 0791.60005 · doi:10.1214/aop/1176989008 · http://minidml.mathdoc.fr/cgi-bin/location?id=00238668
[4] X. Chen , The Kolmogorov’s LIL of $B$-valued random elements and empirical processes . Acta Mathematica Sinica 36 ( 1993 ) 600 - 619 . Zbl 0785.60019 · Zbl 0785.60019
[5] Y.S. Chow and H. Teicher , Probability Theory: Independence , Interchangeability, Martigales. Springer-Verlag, New York ( 1978 ). MR 513230 | Zbl 0399.60001 · Zbl 0399.60001
[6] D. Deng , On the Self-normalized Bounded Laws of Iterated Logarithm in Banach Space . Stat. Prob. Lett. 19 ( 2003 ) 277 - 286 . Zbl 1113.60300 · Zbl 1113.60300 · doi:10.1016/S0167-7152(03)00172-X
[7] U. Einmahl , Toward a general law of the iterated logarithm in Banach space . Ann. Probab. 21 ( 1993 ) 2012 - 2045 . Article | Zbl 0790.60034 · Zbl 0790.60034 · doi:10.1214/aop/1176989009 · http://minidml.mathdoc.fr/cgi-bin/location?id=00238669
[8] E. Gine and J. Zinn , Some limit theorem for emperical processes . Ann. Probab. 12 ( 1984 ) 929 - 989 . Article | Zbl 0553.60037 · Zbl 0553.60037 · doi:10.1214/aop/1176993138 · http://minidml.mathdoc.fr/cgi-bin/location?id=00239591
[9] A. Godbole , Self-normalized bounded laws of the iterated logarithm in Banach spaces , in Probability in Banach Spaces 8, R. Dudley, M. Hahn and J. Kuelbs Eds. Birkhäuser Progr. Probab. 30 ( 1992 ) 292 - 303 . Zbl 0787.60011 · Zbl 0787.60011
[10] P. Griffin and J. Kuelbs , Self-normalized laws of the iterated logarithm . Ann. Probab. 17 ( 1989 ) 1571 - 1601 . Article | Zbl 0687.60033 · Zbl 0687.60033 · doi:10.1214/aop/1176991175 · http://minidml.mathdoc.fr/cgi-bin/location?id=00239087
[11] P. Griffin and J. Kuelbs , Some extensions of the LIL via self-normalizations . Ann. Probab. 19 ( 1991 ) 380 - 395 . Article | Zbl 0722.60028 · Zbl 0722.60028 · doi:10.1214/aop/1176990551 · http://minidml.mathdoc.fr/cgi-bin/location?id=00238959
[12] M. Ledoux and M. Talagrand , Characterization of the law of the iterated logarithm in Babach spaces . Ann. Probab. 16 ( 1988 ) 1242 - 1264 . Article | Zbl 0662.60008 · Zbl 0662.60008 · doi:10.1214/aop/1176991688 · http://minidml.mathdoc.fr/cgi-bin/location?id=00239217
[13] M. Ledoux and M. Talagrand , Some applications of isoperimetric methods to strong limit theorems for sums of independent random variables . Ann. Probab. 18 ( 1990 ) 754 - 789 . Article | Zbl 0713.60005 · Zbl 0713.60005 · doi:10.1214/aop/1176990857 · http://minidml.mathdoc.fr/cgi-bin/location?id=00239033
[14] M. Ledoux and M. Talagrand , Probability in Banach Space . Springer-Verlag, Berlin ( 1991 ). MR 1102015 | Zbl 0748.60004 · Zbl 0748.60004
[15] R. Wittmann , A general law of iterated logarithm . Z. Wahrsch. verw. Gebiete 68 ( 1985 ) 521 - 543 . Zbl 0547.60036 · Zbl 0547.60036 · doi:10.1007/BF00535343