×

Estimation of parameters in a network reliability model with spatial dependence. (English) Zbl 1136.62380

Summary: An iterative method based on a fixed-point property is proposed for finding maximum likelihood estimators for parameters in a model of network reliability with spatial dependence. The method is shown to converge at a geometric rate under natural conditions on data.

MSC:

62N05 Reliability and life testing
62N02 Estimation in survival analysis and censored data
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] O. Barndorff-Nielsen , Information and Exponential Families . Wiley, New York ( 1978 ). MR 489333 · Zbl 0387.62011
[2] T. Bu , N. Duffield , F. Lo Presti and D. Towsley , Network tomography on general topologies . Proc. ACM Sigmetrics 2002, Marina Del Ray, June 15 - 19 ( 2002 ).
[3] R. Cáceres , N.G. Duffield , J. Horowitz , D. Towsley and T. Bu , Multicast-based inference of network internal characteristics: accuracy of packet loss estimation . IEEE Trans. Inform. Theory 45 ( 2000 ) 2462 - 2480 . Zbl 0961.94002 · Zbl 0961.94002
[4] M. Coates , A.O. Hero , R. Nowak and B. Yu , Internet tomography . IEEE Signal Processing Magazine 19 ( 2002 ) 47 - 65 .
[5] J.N. Darroch and D. Ratcliff , Generalized iterative scaling for log-linear models . Ann. Math. Stat. 43 ( 1972 ) 1470 - 1480 . Article | Zbl 0251.62020 · Zbl 0251.62020
[6] A.P. Dempster , N.M. Laird and D.B. Rubin , Maximum likelihood from incomplete data via the EM algorithm . J. Roy. Statist. Soc. B 39 ( 1997 ) 1 - 38 . Zbl 0364.62022 · Zbl 0364.62022
[7] I.H. Dinwoodie and E. Mosteig , Statistical inference for network reliability with spatial dependence . SIAM J. Discrete Math. 16 ( 2003 ) 663 - 674 . Zbl 1047.62094 · Zbl 1047.62094
[8] N. Duffield , J. Horowitz , D. Towsley , W. Wei and T. Friedman , Multicast-based loss inference with missing data . IEEE J. Selected Areas Communications 20 ( 2002 ) 700 - 713 .
[9] C. Ji and A. Elwalid , Measurement-based network monitoring and inference: scalability and missing information . IEEE J. Selected Areas Communications 20 ( 2002 ) 714 - 725 .
[10] G. Liang and B. Yu , Maximum pseudo-likelihood estimation in network tomography . IEEE Trans. Signal Process. 51 ( 2003 ) 2043 - 2053 .
[11] M. Marcus and H. Minc , A Survey of Matrix Theory and Matrix Inequalities . Allyn and Bacon, Boston ( 1964 ). MR 162808 | Zbl 0126.02404 · Zbl 0126.02404
[12] P. Parrilo and B. Sturmfels , Minimizing polynomial functions . http://xyz.lanl.gov/abs/math.OC/ 0103170 ( 2002 ). arXiv | MR 1995016 · Zbl 1099.13516
[13] Y. Tsang , M. Coates and R. Nowak , Passive network tomography using EM algorithms . Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, Utah 3 (May 2001) 1469 - 1472 .
[14] C.F. Jeff Wu , On the convergence of the EM algorithm . Ann. Statist. 11 ( 1983 ) 95 - 103 . Article | Zbl 0517.62035 · Zbl 0517.62035
[15] B. Xi , G. Michailidis and V.N. Nair , Estimating network internal losses using a new class of probing experiments . University of Michigan Department of Statistics Technical Report 397 ( 2003 ).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.