Dynamics of a satellite orbiting a planet with an inhomogeneous gravitational field. (English) Zbl 1136.70316

Summary: We study the dynamics of a satellite (artificial or natural) orbiting an Earth-like planet at low altitude from an analytical point of view. The perturbation considered takes into account the gravity attraction of the planet and in particular it is caused by its inhomogeneous potential. We begin by truncating the equations of motion at second order, that is, incorporating the zonal and the tesseral harmonics up to order two. The system is formulated as an autonomous Hamiltonian and has three degrees of freedom. After three successive Lie transformations, the system is normalised with respect to two angular co-ordinates up to order five in a suitable small parameter given by the quotient between the angular velocity of the planet and the mean motion of the satellite. Our treatment is free of power expansions of the eccentricity and of truncated Fourier series in the anomalies. Once these transformations are performed, the truncated Hamiltonian defines a system of one degree of freedom which is rewritten as a function of two variables which generate a phase space which takes into account all of the symmetries of the problem. Next an analysis of the system is achieved obtaining up to six relative equilibria and three types of bifurcations. The connection with the original system is established concluding the existence of various families of invariant 3-tori of it, as well as quasiperiodic and periodic trajectories. This is achieved by using KAM theory techniques.


70F15 Celestial mechanics
37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
70F05 Two-body problems
70H05 Hamilton’s equations
70M20 Orbital mechanics
Full Text: DOI


[1] Abraham R. and Marsden J.E. (1978). Foundations of Mechanics. Addison-Wesley Publishing Company, Inc., Redwood City, CA · Zbl 0393.70001
[2] (1988). Dynamical Systems III, Encyclopaedia of Mathematical Sciences 3. Springer-Verlag, New York
[3] Barrio R. and Palacián J.F. (2003). High-order averaging of eccentric artificial satellites perturbed by the Earth’s potential and air-drag terms. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459: 1517–1534 · Zbl 1041.70020 · doi:10.1098/rspa.2002.1089
[4] Brouwer D. (1959). Solution of the problem of artificial satellite theory without drag. Astronom. J. 64: 378–397 · doi:10.1086/107958
[5] Chang D.E. and Marsden J.E. (2003). Geometric derivation of the Delaunay variables and geometric phases. Celest. Mech. Dyn. Astron. 86: 185 · Zbl 1062.70010 · doi:10.1023/A:1024174702036
[6] Coffey S. and Deprit A. (1982). Third-order solution to the main problem in satellite theory. J Guidance Control Dynamics 5: 366–371 · Zbl 0508.70010 · doi:10.2514/3.56183
[7] Coffey S., Deprit A. and Miller B.R. (1986). The critical inclination in artificial satellite theory. Celest. Mech. 36: 365–406 · Zbl 0645.70018
[8] Coffey S., Deprit A. and Deprit E. (1994). Frozen orbits for satellites close to an Earth-like planet. Celest. Mech. 59: 37–72 · Zbl 0840.70020 · doi:10.1007/BF00691970
[9] Coppola V. and Palacián J.F. (1994). Elimination of the latitude in artificial satellite theory. J. Astronaut. Sci. 42: 27–34
[10] Cushman, R.H.: Reduction, Brouwer’s Hamiltonian, and the critical inclination. Celestial Mech. 31, 401–409 (1983); correction: Celest. Mech. 33, 297 (1984) · Zbl 0559.70026
[11] Cushman R.H. (1988). An analysis of the critical inclination problem using singularity theory. Celest. Mech. 42: 39–51
[12] Cushman, R. H. In: A survey of normalization techniques applied to perturbed Keplerian systems. Dynamics reported: expositions in dynamical systems. In Dynamics Reported: Expositions in Dynamical Systems (N.S.), vol. 1. Springer-Verlag, Berlin, pp 54–112 (1992) · Zbl 0749.70006
[13] Cushman R.H. and Sadovskií D.A. (2000). Monodromy in the hydrogen atom in crossed fields. Phys. D 142: 166–196 · Zbl 0985.37104 · doi:10.1016/S0167-2789(00)00053-1
[14] Deprit A. (1969). Canonical transformations depending on a small parameter. Celest. Mech. 1: 12–30 · Zbl 0172.26002 · doi:10.1007/BF01230629
[15] Deprit A. (1981). The elimination of the parallax in satellite theory. Celest. Mech. 24: 111–153 · Zbl 0492.70024 · doi:10.1007/BF01229192
[16] Deprit A. (1982). Delaunay normalizations. Celest. Mech. 26: 9–21 · Zbl 0512.70016 · doi:10.1007/BF01233178
[17] Deprit A. and Ferrer S. (1987). Note on Cid’s radial intermediary and the method of averaging. Celest. Mech. 40: 335–343 · Zbl 0656.70031 · doi:10.1007/BF01235851
[18] Deprit A. and Miller B. (1988). Simplify or perish. Celest. Mech. 45: 189–200 · Zbl 0674.70004 · doi:10.1007/BF01229001
[19] Deprit A., Palacián J. F. and Deprit E. (2001). The relegation algorithm. Celest. Mech. Dyn. Astron. 79: 157–182 · Zbl 1040.70008 · doi:10.1023/A:1017504810031
[20] Efstathiou K., Cushman R. H. and Sadovskií A.D. (2004). Hamiltonian Hopf bifurcation of the hydrogen atom in crossed fields. Phys. D 194: 250–274 · Zbl 1059.37069 · doi:10.1016/j.physd.2004.03.003
[21] Ferrer S., Hanßmann H, Palacián F.J. and Yanguas P. (2002). On perturbed oscillators in 1-1-1 resonance: the case of axially symmetric cubic potentials. J. Geom. Phys. 40: 320–369 · Zbl 1037.34031 · doi:10.1016/S0393-0440(01)00041-9
[22] Henrard J. (1974). Virtual singularities in the artificial satellite theory. Celest. Mech. 10: 437–449 · Zbl 0306.70012 · doi:10.1007/BF01229120
[23] Iñarrea M., Lanchares V., Palacián J. F., Pascual A.I., Salas J. P. and Yanguas P. (2004). The Keplerian regime of charged particles in planetary magnetospheres. Phys. D 197: 242–268 · Zbl 1076.85002 · doi:10.1016/j.physd.2004.07.009
[24] Iñarrea M., Lanchares V., Palacián J.F., Pascual A. I., Salas J. P. and Yanguas P. (2006). Reduction of some perturbed Keplerian problems. Chaos, Solitons Fractals 27: 527–536 · Zbl 1141.70304 · doi:10.1016/j.chaos.2005.03.052
[25] Kaula W.T. (1966). Theory of Satellite Geodesy Blaisdell Publishing Company. Waltham, MA
[26] Kozai Y. (1962). Mean values of cosine functions in elliptic motion. Astron. J 67: 446–461 · doi:10.1086/108753
[27] Lara M. (2003). Repeat ground track orbits of the Earth tesseral problem as bifurcations of the equatorial family of periodic orbits. Celest. Mech. Dyn. Astron. 86: 143–162 · Zbl 1062.70609 · doi:10.1023/A:1024195900757
[28] Lara M. and Elipe A. (2002). Periodic orbits around geostationary positions. Celest. Mech. Dyn. Astron. 82: 285–299 · Zbl 0994.70020 · doi:10.1023/A:1015046613477
[29] Métris G., Exertier P., Bourdon Y. and Barlier F. (1993). Long period variations of the motion of a satellite due to non–resonant tesseral harmonics of a gravity potential. Celest. Mech. Dyn. Astron. 57: 175–188 · Zbl 0785.70022 · doi:10.1007/BF00692472
[30] Osácar C. and Palacián J.F (1994). Decomposition of functions for elliptic orbits. Celest. Mech. Dyn. Astron. 60: 207–223 · Zbl 0822.70008 · doi:10.1007/BF00693322
[31] Palacián J.F. (2002a). Normal forms for perturbed Keplerian systems. J. Differ Equations 180: 471–519 · Zbl 1098.70014 · doi:10.1006/jdeq.2001.4068
[32] Palacián J.F. (2002b). Closed-form normalizations of perturbed two-body problems. Chaos, Solitons Fractals 13: 853–874 · Zbl 1073.70509 · doi:10.1016/S0960-0779(01)00062-5
[33] Palacián J.F. (2003). Invariant manifolds of an autonomous ordinary differential equation from its generalized normal forms. Chaos 13: 1188–1204 · Zbl 1080.37565 · doi:10.1063/1.1613551
[34] Palacián J.F. (2006). Artificial satellite theory: Contribution of the tesseral harmonic coefficients. Rev. Mex. Astron. Astrofis. 25: 32–34
[35] Palacián J.F., Yanguas P., Fernández S. and Nicotra M.A. (2006). Searching for periodic orbits of the spatial elliptic restricted three-body problem by double averaging. Phys. D 213: 15–24 · Zbl 1089.70004
[36] Segerman A.M. and Coffey S.L. (2000). An analytical theory for tesseral gravitational harmonics. Celest Mech. Dyn. Astro. 76: 139–156 · Zbl 0963.70020 · doi:10.1023/A:1008345403145
[37] Serrano, S. Teorías Analíticas del Movimiento de un Satélite Artificial alrededor de un Planeta. Ordenación Asintótica del Potencial en el Espacio Fásico PhD, Universidad de Zaragoza
[38] Sommer B.: A KAM Theorem for the Spatial Lunar Problem, PhD, University of Aachen
[39] van der Meer, J. C., Cushman, R.H.: Constrained normalization of Hamiltonian systems and perturbed Keplerian motion. Angew. Math. Phys. 37, 402–424 (1986) ; correction: Z. Angew. Math. Phys. 37, 931 (1986) · Zbl 0606.70013
[40] Verhulst F. (1996). Nonlinear Differential Equations and Dynamical Systems. Springer-Verlag, Berlin · Zbl 0854.34002
[41] Viswanath D. (2001). The Lindstedt-Poincar technique as an algorithm for computing periodic orbits. SIAM Rev. 43: 478–495 · Zbl 0979.65115 · doi:10.1137/S0036144500375292
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.