zbMATH — the first resource for mathematics

Structural optimization using sensitivity analysis and a level-set method. (English) Zbl 1136.74368
Summary: In the context of structural optimization we propose a new numerical method based on a combination of the classical shape derivative and of the level-set method for front propagation. We implement this method in two and three space dimensions for a model of linear or nonlinear elasticity. We consider various objective functions with weight and perimeter constraints. The shape derivative is computed by an adjoint method. The cost of our numerical algorithm is moderate since the shape is captured on a fixed Eulerian mesh. Although this method is not specifically designed for topology optimization, it can easily handle topology changes. However, the resulting optimal shape is strongly dependent on the initial guess.

74P15 Topological methods for optimization problems in solid mechanics
49Q12 Sensitivity analysis for optimization problems on manifolds
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
74G15 Numerical approximation of solutions of equilibrium problems in solid mechanics
Full Text: DOI HAL
[1] Allaire, G., Shape optimization by the homogenization method, (2001), Springer Verlag New York
[2] Allaire, G.; Bonnetier, E.; Francfort, G.; Jouve, F., Shape optimization by the homogenization method, Nümerische Mathematik, 76, 27-68, (1997) · Zbl 0889.73051
[3] Allaire, G.; Jouve, F., Optimal design of micro-mechanisms by the homogenization method, Eur. J. finite elements, 11, 405-416, (2002) · Zbl 1120.74710
[4] Allaire, G.; Jouve, F.; Toader, A.-M., A level-set method for shape optimization, C.R. acad. sci. Paris, Série I, 334, 1125-1130, (2002) · Zbl 1115.49306
[5] Allaire, G.; Kohn, R.V., Optimal design for minimum weight and compliance in plane stress using extremal microstructures, Eur. J. mech. A/solids, 12, 6, 839-878, (1993) · Zbl 0794.73044
[6] Almgren, F.; Taylor, J., Optimal geometry in equilibrium and growth. symposium in honor of benoit Mandelbrot (curaçao, 1995), Fractals, 3, 713-723, (1995)
[7] Ambrosio, L.; Buttazzo, G., An optimal design problem with perimeter penalization, Calc. var., 1, 55-69, (1993) · Zbl 0794.49040
[8] Ball, J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. rational mech. anal., 63, 337-403, (1977) · Zbl 0368.73040
[9] Bendsoe, M., Methods for optimization of structural topology shape, and material, (1995), Springer Verlag New York · Zbl 0822.73001
[10] Bendsoe, M.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comp. meth. appl. mech. eng., 71, 197-224, (1988) · Zbl 0671.73065
[11] Bendsoe, M.; Sigmund, O., Topology optimization. theory, methods, and applications, (2003), Springer Verlag New York · Zbl 1059.74001
[12] Bourdin, B.; Chambolle, A., Design-dependent loads in topology optimization, ESAIM control optim. calc. var., 9, 19-48, (2003) · Zbl 1066.49029
[13] Buhl, T.; Pedersen, C.; Sigmund, O., Stiffness design of geometrically nonlinear structures using topology optimization, Struct. multidisciplinary optim., 19, 2, 93-104, (2000)
[14] Burger, M., A framework for the construction of level set methods for shape optimization and reconstruction, Interf. free boundaries, 5, 301-329, (2003) · Zbl 1081.35134
[15] Chambolle, A., A density result in two-dimensional linearized elasticity and applications, Arch. rational mech. anal., 167, 211-233, (2003) · Zbl 1030.74007
[16] A. Chambolle, C.J. Larsen, C∞-regularity of the free boundary for a two-dimensional optimal compliance problem, Calc. Var. Partial Diff. Eq., in press · Zbl 1026.49031
[17] Céa, J., Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût, Math. model. numer. anal., 20, 3, 371-402, (1986) · Zbl 0604.49003
[18] Chenais, D., On the existence of a solution in a domain identification problem, J. math. anal. appl., 52, 189-289, (1975) · Zbl 0317.49005
[19] Cherkaev, A., Variational methods for structural optimization, (2000), Springer Verlag New York · Zbl 0956.74001
[20] Ciarlet, P.G., Mathematical elasticity, Three-dimensional elasticity, vol. I, (1988), North-Holland Amsterdam · Zbl 0648.73014
[21] Eschenauer, H.; Schumacher, A., Bubble method for topology and shape optimization of structures, Struct. optim., 8, 42-51, (1994)
[22] Garreau, S.; Guillaume, P.; Masmoudi, M., The topological asymptotic for PDE systems: the elasticity case, SIAM J. control optim., 39, 6, 1756-1778, (2001) · Zbl 0990.49028
[23] Mohammadi, B.; Pironneau, O., Applied shape optimization for fluids, (2001), Clarendon Press Oxford · Zbl 0970.76003
[24] Murat, F.; Simon, S., Etudes de problèmes d’optimal design. lecture notes in computer science 41, (1976), Springer Verlag Berlin, pp. 54-62
[25] Osher, S.; Santosa, F., Level-set methods for optimization problems involving geometry and constraints: frequencies of a two-density inhomogeneous drum, J. comp. phys., 171, 272-288, (2001) · Zbl 1056.74061
[26] Osher, S.; Sethian, J.A., Front propagating with curvature dependent speed: algorithms based on hamilton – jacobi formulations, J. comp. phys., 78, 12-49, (1988) · Zbl 0659.65132
[27] Pironneau, O., Optimal shape design for elliptic systems, (1984), Springer-Verlag New York · Zbl 0496.93029
[28] Sethian, J.A., Level-set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision and materials science, (1999), Cambridge University Press Cambridge, MA · Zbl 0973.76003
[29] Sethian, J.; Wiegmann, A., Structural boundary design via level-set and immersed interface methods, J. comp. phys., 163, 489-528, (2000) · Zbl 0994.74082
[30] Sigmund, O., On the design of compliant mechanisms using topology optimization, Mech. struct. Mach., 25, 493-524, (1997)
[31] Simon, J., Differentiation with respect to the domain in boundary value problems, Numer. funct. anal. optim., 2, 649-687, (1980) · Zbl 0471.35077
[32] Sokołowski, J.; Żochowski, A., Topological derivatives of shape functionals for elasticity systems, Mech. struct. Mach., 29, 3, 331-349, (2001)
[33] Sokołowski, J.; Zolesio, J.P., Introduction to shape optimization: shape sensitivity analysis, Springer series in computational mathematics, vol. 10, (1992), Springer Berlin
[34] Wang, M.Y.; Wang, X.; Guo, D., A level-set method for structural topology optimization, Comput. meth. appl. mech. engrg., 192, 227-246, (2003) · Zbl 1083.74573
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.