zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The geometry of nesting problems: a tutorial. (English) Zbl 1136.90030
Summary: Cutting and packing problems involving irregular shapes is an important problem variant with a wide variety of industrial applications. Despite its relevance to industry, research publications are relatively low when compared to other cutting and packing problems. One explanation offered is the perceived difficulty and substantial time investment of developing a geometric tool box to assess computer generated solutions. In this paper we set out to provide a tutorial covering the core geometric methodologies currently employed by researchers in cutting and packing of irregular shapes. The paper is not designed to be an exhaustive survey of the literature but instead will draw on the literature to illustrate the theory and implementation of the approaches. We aim to provide a sufficiently instructive description to equip new and current researchers in the area to select the most appropriate methodology for their needs.

MSC:
90C27Combinatorial optimization
90C90Applications of mathematical programming
65D18Computer graphics, image analysis, and computational geometry
WorldCat.org
Full Text: DOI
References:
[1] Agarwal, P. K.; Flato, E.; Halperin, D.: Polygon decomposition for efficient construction of Minkowski sums, Computational geometry theory and applications 21, 29-61 (2002) · Zbl 0991.68124 · doi:10.1016/S0925-7721(01)00041-4
[2] Babu, A. R.; Babu, N. R.: A generic approach for nesting of 2-D parts in 2-D sheets using genetic and heuristic algorithms, Computer-aided design 33, 879-891 (2001) · Zbl 1206.90031 · doi:10.1016/S0010-4485(00)00112-3
[3] Beasley, J. E.: Bounds for 2-dimensional cutting, Journal of the operational research society 36, 71-74 (1985) · Zbl 0557.90046 · doi:10.2307/2582079
[4] Bennell, J.A., 1998. Incorporating problem specific knowledge into a local search framework for the irregular shape packing problem, PhD thesis, University of Wales, UK.
[5] Bennell, J.A., Song, X., 2005. A comprehensive and robust procedure for obtaining the nofit polygon using Minkowski sums, Working paper series, Centre for Operational Research, Management Science and Information Systems, University of Southampton, UK. · Zbl 1136.65023
[6] Bennell, J. A.; Dowsland, K. A.; Dowsland, W. B.: The irregular cutting-stock problem -- a new procedure for deriving the no-fit polygon, Computers and operations research 28, 271-287 (2001) · Zbl 1048.90510 · doi:10.1016/S0305-0548(00)00021-6
[7] Cuninghame-Green, R.: Geometry, shoemaking and the milk tray problem, New scientist 1677, No. 12 August, 50-53 (1989)
[8] Dyckhoff, H.: A typology of cutting and packing problems, European journal of operational research 44, 145-159 (1990) · Zbl 0684.90076 · doi:10.1016/0377-2217(90)90350-K
[9] Ferreira, J.C., Alves, J.C., Albuquerque, C., Oliveira, J.F., Ferreira, J.S., Matos, J.S., 1998, A Flexible Custom Computing Machine for Nesting Problems. In: Proceedings of XIII DCIS, Madrid, Spain.
[10] Ghosh, P. K.: An algebra of polygons through the notion of negative shapes, CVGIP: image understanding 54, No. 1, 119-144 (1991) · Zbl 0774.68118 · doi:10.1016/1049-9660(91)90078-4
[11] Konopasek, M., 1981. Mathematical Treatments of Some Apparel Marking and Cutting Problems, U.S. Department of Commerce Report 99-26-90857-10.
[12] Letchford, A. N.; Amaral, A.: Analysis of upper bounds for the pallet loading problem, European journal of operational research 132, 582-593 (2001) · Zbl 1054.90062 · doi:10.1016/S0377-2217(00)00163-6
[13] Li, Z.; Milenkovic, V.: Compaction and separation algorithms for non-convex polygons and their application, European journal of operations research 84, 539-561 (1995) · Zbl 1127.90403 · doi:10.1016/0377-2217(95)00021-H
[14] Mahadevan, A., 1984. Optimisation in computer aided pattern packing, Ph.D. Thesis, North Carolina State University.
[15] Milenkovic, V., Daniels, K., Li, Z., 1991. Automatic marker making. In: Proceedings of the Third Canadian Conference on Computational Geometry, Simon Fraser University, Vancouver, BC, pp. 243 -- 246.
[16] Oliveira, J. F.; Ferreira, J. S.: Algorithms for nesting problems, applied simulated annealing, Lecture notes in econ. And maths systems 396, 255-274 (1993)
[17] Preparata, F. P.; Shamos, M. I.: Computational geometry: an introduction, (1985) · Zbl 0575.68059
[18] Ramkumar, G.D., 1996. An algorithm to compute the Minkowski sum outer-face of two simple polygons. In: Proceedings of the 12th Annual Symposium on Computational Geometry FCRC 96.
[19] Segenreich, S. A.; Braga, L. M.: Optimal nesting of general plane figures: a Monte Carlo heuristical approach, Computers & graphics 10, 229-237 (1986)
[20] Stoyan, Y.G., Ponomarenko, L.D., 1977. Minkowski sum and hodograph of the dense placement vector function, Reports of the SSR Academy of Science, SER.A 10.
[21] Stoyan, Y. G.; Terno, J.; Scheithauer, G.; Gil, N.; Romanova, T.: Phi-functions for primary 2D-objects, Studia informatica universalis 2, No. 1, 1-32 (2001)
[22] Stoyan, Y.; Scheithauer, G.; Gil, N.; Romanova, T.: $\Phi $-functions for complex 2D-objects, 4OR: quarterly journal of the belgian, French and italian operations research societies 2, 69-84 (2004) · Zbl 1125.90382 · doi:10.1007/s10288-003-0027-1
[23] Watson, P. D.; Tobias, A. M.: An efficient algorithm for the regular W1 packing of polygons in the infinite plane, Journal of the operational research society 50, No. 10, 1054-1062 (1999) · Zbl 1054.90626
[24] Waescher, G., Haussner, H., Schumann, H., 2005. An improved typology of cutting and packing problems, European Journal of Operations Research, forthcoming.
[25] Whitwell, G., 2005. PhD. thesis, School of Computer Sciences, University of Nottingham, UK.
[26] Y., G. G.; Kang, M. K.: A new upper bound for unconstrained two-dimensional cutting and packing, Journal of the operational research society 53, No. 5, 587-591 (2002) · Zbl 1059.90122 · doi:10.1057/palgrave/jors/2601326