zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The function cascade synchronization approach with uncertain parameters or not for hyperchaotic systems. (English) Zbl 1136.93410
Summary: The function cascade synchronization scheme for the hyperchaotic systems is proposed to make the states of two identical hyperchaotic systems both with and without uncertain parameters asymptotically synchronized. Based on Lyapunov stability theory and the proposed scheme, the Lü system and Chen hyperchaotic system with and without uncertain parameters are chosen to achieve the function cascade synchronization simultaneously. Numerical simulations are used to verify the effectiveness and feasibility of the presented control scheme.

93D05Lyapunov and other classical stabilities of control systems
93C41Control problems with incomplete information
37D45Strange attractors, chaotic dynamics
Full Text: DOI
[1] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems. Phys. rev. Lett. 64, 821-824 (1990) · Zbl 0938.37019
[2] Chen, G.; Dong, X.: From chaos to order. (1998) · Zbl 0908.93005
[3] Ott, E. C.; Grebogi, C.; Yorke, J. A.: Controlling chaos. Phys. rev. Lett. 64, 1196-1199 (1990) · Zbl 0964.37501
[4] Chen, G.: Chaos on some controllability conditions for chaotic dynamics control. Chaos, solitons & fractals 8, 1461-1470 (1997)
[5] Park, J. H.; Kwon, O. M.: LMI optimization approach to stabilization of time-delay chaotic systems. Chaos, solitons & fractals 23, 445-450 (2005) · Zbl 1061.93509
[6] Hwang, C. C.; Hsieh, J. Y.; Lin, R. S.: A linear continuous feedback control of Chua circuit. Chaos, solitons & fractals 8, 1507-1515 (1997)
[7] Lü, J. H.; Lu, J. A.: Controlling uncertain Lü system using linear feedback. Chaos, solitons & fractals 17, 127-133 (2003) · Zbl 1039.37019
[8] Chen, M. Y.; Han, Z. Z.: Controlling and synchronizing chaotic Genesio system via nonlinear feedback control. Chaos, solitons & fractals 17, 709-716 (2003) · Zbl 1044.93026
[9] Lu, J. A.; Wu, X. Q.; Lü, J. H.: Synchronization of a unified chaotic system and the application insecure communication. Phys. lett. A 305, 365-370 (2002) · Zbl 1005.37012
[10] Wu, X. Q.; Lu, J. A.: Parameter identification and backstepping control of uncertain Lü system. Chaos, solitons & fractals 18, 721-729 (2003) · Zbl 1068.93019
[11] Wang, Q.; Chen, Y.: Generalized Q-S (lag, anticipated and complete) synchronization in modified Chua’s circuit and hindmarsh -- rose systems. Appl. math. Comput. 181, 48-56 (2006) · Zbl 1145.37312
[12] Ge, Z. M.; Lee, J. K.: Chaos synchronization and parameter identification for gyroscope system. Appl. math. Comput. 163, 667-682 (2005) · Zbl 1116.70012
[13] Yassen, M. T.: The optimal control of Chen chaotic dynamical system. Appl. math. Comput. 131, 171-180 (2002) · Zbl 1042.49002
[14] Plienpanich, T.; Niamsup, P.; Lenbury, Y.: Controllability and stability of the perturbed Chen chaotic dynamical system. Appl. math. Comput. 171, 927-947 (2005) · Zbl 1121.93309
[15] Lu, J. A.; Wu, X. Q.; Han, X.; Lü, J. H.: Adaptive feedback synchronization of a unified chaotic system. Phys. lett. A 329, 327-333 (2004) · Zbl 1209.93119
[16] Han, X.; Lu, J. A.; Wu, X. Q.: Adaptive feedback synchronization of Lü system. Chaos, solitons & fractals 22, 221-227 (2004) · Zbl 1060.93524
[17] Elabbasy, E. M.; Agiza, H. N.; El-Dessoky, M. M.: Adaptive synchronization of Lü system with uncertain parameters. Chaos, solitons & fractals 21, 657-667 (2004) · Zbl 1062.34039
[18] Carroll, T. L.; Pecora, L. M.: Cascading synchronized chaotic systems. Physica D 67, 126-140 (1993) · Zbl 0800.94100
[19] Mainieri, R.; Rehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. rev. Lett. 82, 3042-3045 (1999)
[20] Yan, J. P.; Li, C. P.: Generalized projective synchronization of chaos: the cascade synchronization approach. Chaos, solitons & fractals 30, 140-146 (2006) · Zbl 1144.37370
[21] Y. Chen, X. Li, Function projective synchronization between two identical chaotic systems, Int. J. Mod. Phys. C (in press). · Zbl 1139.37301
[22] Xu, D. L.; Chee, C. Y.; Li, C. P.: A necessary condition of projective synchronization in discrete-time systems of arbitrary dimensions. Chaos, solitons & fractals 22, 175-180 (2004) · Zbl 1060.93535
[23] Wen, G. L.; Xu, D. L.: Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems. Chaos, solitons & fractals 26, 71-77 (2005) · Zbl 1122.93311
[24] Li, G. H.: Generalized projective synchronization of two chaotic systems by using active control. Chaos, solitons & fractals 30, 77-82 (2006) · Zbl 1144.37372
[25] Li, Z.; Han, C.; Shi, S.: Modification for synchronization of röossler and Chen chaotic systems. Phy. lett. A 301, 224-230 (2002) · Zbl 0997.37014
[26] Chen, S. H.; Lü, J. H.: Parameters identification and synchronization of chaotic systems based upon adaptive control. Phys. lett. A. 299, 353-358 (2002) · Zbl 0996.93016
[27] Wang, Y. W.; Guan, Z. H.; Wen, X. J.: Adaptive synchronization for Chen chaotic system with fully unknown parameters. Chaos, solitons & fractals 19, 899-903 (2004) · Zbl 1053.37528
[28] Elabbasy, E. M.; Agiza, H. N.; El-Dessoky, M. M.: Adaptive synchronization of a hyperchaotic system with uncertain parameter. Chaos, solitons & fractals 30, 1133-1142 (2006) · Zbl 1142.37325
[29] S. Salarieh, M. Shahrokhi, Adaptive synchronization of two different chaotic systems with time varying unknown parameters, Chaos, Solitons & Fractals, doi:10.1016/j.chaos.2006;08.038. · Zbl 1147.93397
[30] Park, J. H.: Adaptive synchronization of hyperchaotic Chen system with uncertain parameters. Chaos, solitons & fractals 26, 959-964 (2005) · Zbl 1093.93537
[31] Chen, S. H.; Hu, J.; Wang, C. P.; Lü, J. H.: Adaptive synchronization of uncertain Rössler hyperchaotic system based on parameter identification. Phys. lett. A 1, 50-55 (2004) · Zbl 1118.81326
[32] Feng, J. W.; Chen, S. H.; Wang, C. P.: Adaptive synchronization of uncertain hyperchaotic systems based on parameter identification. Chaos, solitons & fractals 26, 1163-1169 (2005) · Zbl 1122.93401
[33] M.T. Yassen, Synchronization hyperchaos of hyperchaotic systems, Chaos, Solitons & Fractals, doi:10.1016/j.chaos.2006;09.045.
[34] Yan, Z. Y.: Controlling hyperchaos in the new hyperchaotic Chen systems. Appl. math. Comput. 168, 1239-1250 (2005) · Zbl 1160.93384
[35] Y. Li, WKS. Tang , G. Chen, Generating hyperchaos via state feedback control, Int. J. Bifur. Chaos (in press).