×

Stability analysis of a single inductor dual switching dc–dc converter. (English) Zbl 1136.94330

Summary: This paper deals with the analysis of a single inductor switching dc–dc power electronics converter which is used to regulate two, in general non-symmetric, positive and negative outputs. A PWM control with a double PI feedback loop is used for the regulation of both output voltages. The steady state properties of this converter are first discussed and then stability is studied in terms of both power stage and control parameters.

MSC:

94C05 Analytic circuit theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Banerjee, S.; Ott, E.; Yorke, J. A.; Yuan, G. H., Anomalous bifurcations in dc-dc converters: borderline collisions in piecewise smooth maps, (Proceedings of the 28th IEEE PESC, vol. 2 (1997)), 1337-1344
[2] Bass, R. M.; Krein, P. T., Limit cycle geometry and control in power electronic systems, (Proceedings of the 32nd Midwest Symposium on Circuits and Systems (1989)), 785-787
[3] di Bernardo, M.; Budd, C. J.; Champneys, A. R., Grazing, skipping and sliding: analysis of the non-smooth dynamics of the dc/dc buck converter, Nonlinearity, 11, 4, 859-890 (1998) · Zbl 0904.34034
[4] di Bernardo, M.; Feigin, M. I.; Hogan, S. J.; Homer, M. E., Local analysis of C-bifurcations in \(N\)-dimensional piecewise-smooth dynamical systems, Chaos Solutions Fractals, 10, 11, 1881-1908 (1999) · Zbl 0967.37030
[5] di Bernardo, M.; Vasca, F., Discrete-time maps for the analysis of bifurcations and chaos in dc/dc converters, IEEE Trans. Circuits Syst. I, 47, 2, 130-143 (2000)
[6] Deane, J. H.B.; Hamill, D. C., Instability, subharmonics and chaos in power electronic systems, IEEE Trans. Power Electron., 5, 3, 260-268 (1990)
[7] Dénes, I.; Nagy, I., Two models for the dynamic behaviour of a dual-channel buck and boost dc-dc converter, Electromotion, 10, 4, 556-561 (2003)
[8] Dranga, O.; Buti, B.; Nagy, I., Stability analysis of a feedback-controlled resonant DC-DC converter, IEEE Trans. Ind. Electron., 50, 1, 141-152 (2003)
[9] Giral, R.; Calvente, J.; Leyva, R.; El Aroudi, A.; Arsov, G.; Martinez-Salamero, L., Symmetrical power supply for 42V automotive applications, AAS (2003), (Macedonia)
[10] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (1983), Springer-Verlag · Zbl 0515.34001
[11] Hamar, J.; Nagy, I., Control features of dual-channel DC-DC converters, IEEE Trans. Ind. Electron., 49, 6, 1293-1305 (2002)
[12] Hamar, J.; Nagy, I., Asymmetrical operation of dual channel resonant DC-DC converters, IEEE Trans. Power Electron., 18, 1, 83-94 (2003)
[13] Kassakian, J. G.; Schlecht, M.; Verghese, G. C., Principles of Power Electronics (1991), Addison-Wesley
[14] Krein, P. T., Elements of Power Electronics (1998), Oxford University Press
[15] Krein, P. T.; Bass, R. M., Types of instability encountered in simple power electronics circuits: unboundedness, chattering and chaos, IEEE APEC, 191-194 (1990)
[16] Kutnetsov, Y. A., Elements of Applied Bifurcation Theory (1998), Springer-Verlag
[17] Mohan, N.; Undeland, T. M.; Robins, W. P., Power Electronics: Converters, Applications and Design (2003), John Wiley & Sons
[18] Nagy, I.; Dranga, O., Bifurcation in a dual channel resonant dc-dc converter, IEEE Int. Symp. Ind. Electron. ISIE, 495-500 (2000)
[19] Robert, B.; Robert, C., Border collision bifurcations in a chaotic PWM H-bridge single-phase inverter, (Proceedings of the 10th International Power Electronics and Motion Control Conference (EPE-PEMC’ 02) (2002))
[20] Tse, C. K., Complex Behaviour of Switching Power Converters (2004), CRC Press
[21] Tse, C. K.; di Bernardo, M., Complex behavior in switching power converters, Proc. IEEE, 90, 5, 768-781 (2002)
[22] Zhusubaliyev, Z. T.; Mosekilde, E., Bifurcation and chaos in piecewise-smooth systems, World Scientific (2003) · Zbl 1047.34048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.