Bona, Jerry L.; Grujić, Zoran Spatial analyticity properties of nonlinear waves. (English) Zbl 1137.35418 Math. Models Methods Appl. Sci. 13, No. 3, 345-360 (2003). Cited in 17 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 35B65 Smoothness and regularity of solutions to PDEs 76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction Keywords:Korteweg-de Vries-type equations; BBM-type equations; analytic solutions of nonlinear wave equations; Gevrey-class regularity; temporal asymptotics PDF BibTeX XML Cite \textit{J. L. Bona} and \textit{Z. Grujić}, Math. Models Methods Appl. Sci. 13, No. 3, 345--360 (2003; Zbl 1137.35418) Full Text: DOI References: [1] DOI: 10.1007/BF01238818 · Zbl 0791.35123 · doi:10.1007/BF01238818 [2] Albert J. P., Mat. Aplic. Comp. 7 pp 3– [3] DOI: 10.1088/0951-7715/15/3/315 · Zbl 1034.35116 · doi:10.1088/0951-7715/15/3/315 [4] DOI: 10.1098/rsta.1972.0032 · Zbl 0229.35013 · doi:10.1098/rsta.1972.0032 [5] DOI: 10.1098/rsta.1995.0027 · Zbl 0824.65095 · doi:10.1098/rsta.1995.0027 [6] DOI: 10.1090/conm/200/02539 · doi:10.1090/conm/200/02539 [7] J. L. Bona, W. G. Pritchard and L. R. Scott, A comparison of solutions of two model equations for long waves, Lectures in Appl. Math. 20 (American Math. Soc., 1983) pp. 235–267. [8] Bona J. L., Canad. Appl. Math. Quart. 3 pp 1– [9] DOI: 10.1017/S0305004199003667 · Zbl 0939.35164 · doi:10.1017/S0305004199003667 [10] Constantin P., Chicago Lectures in Mathematics, in: Navier–Stokes equations (1988) · Zbl 0687.35071 [11] DOI: 10.1016/0167-2789(93)90168-Z · Zbl 0785.35093 · doi:10.1016/0167-2789(93)90168-Z [12] Ferrari A. B., Comm. PDE 23 pp 1– [13] DOI: 10.1016/0022-1236(89)90015-3 · Zbl 0702.35203 · doi:10.1016/0022-1236(89)90015-3 [14] DOI: 10.1023/A:1009002920348 · Zbl 0952.35118 · doi:10.1023/A:1009002920348 [15] Grujić Z., Diff. Integral Eq. 15 pp 1325– [16] DOI: 10.1137/0522107 · Zbl 0742.35056 · doi:10.1137/0522107 [17] Kato T., Adv. Math. Suppl. Studies, Studies Appl. Math. 8 pp 93– [18] Kato T., Ann. Inst. Henri Poincaré, Anal. Nonlinéaire 3 pp 455– · Zbl 0622.35066 · doi:10.1016/S0294-1449(16)30377-8 [19] Kenig C. E., Comm. Pure Appl. Math. pp 27– [20] DOI: 10.1006/jdeq.1996.3200 · Zbl 0876.35090 · doi:10.1006/jdeq.1996.3200 [21] DOI: 10.1090/S0894-0347-02-00392-2 · Zbl 0996.35064 · doi:10.1090/S0894-0347-02-00392-2 [22] DOI: 10.1006/jfan.1999.3550 · Zbl 0960.35081 · doi:10.1006/jfan.1999.3550 [23] DOI: 10.1215/S0012-7094-97-08604-X · Zbl 0874.35114 · doi:10.1215/S0012-7094-97-08604-X This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.