zbMATH — the first resource for mathematics

Non-absolutely continuous foliations. (English) Zbl 1137.37014
In this paper a partially hyperbolic diffeomorphism of a compact manifold preserving a smooth measure is studied. The authors prove that the foliation obtained fails to have the absolute continuous property. They do this by showing that the sum of Lyapunov exponents in the central direction is not zero on a set of positive measure. The authors extend the results to general foliations with compact leaves.

37D30 Partially hyperbolic systems and dominated splittings
37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\)
57R30 Foliations in differential topology; geometric theory
Full Text: DOI
[1] D. Anosov and Y. Sinai, Certain smooth ergodic systems, Russian Mathematical Surveys 22 (1967), 818–823. · Zbl 0171.42201 · doi:10.1070/RM1967v022n05ABEH001228
[2] A. T. Baraviera and C. Bonatti, Removing zero Lyapunov exponents, Ergodic Theory and Dynamical Systems 23 (2003), 1655–1670. · Zbl 1048.37026 · doi:10.1017/S0143385702001773
[3] L. Barreira and Ya. Pesin, Lyapunov Exponents and Smooth Ergodic Theory, University Lecture Series 23, American Mathematical Society, Providence, RI, 2002. · Zbl 0996.37001
[4] M. Brin and Ya. Pesin, Partially hyperbolic dynamical systems, Mathematics of the USSR-Izvestiya 8 (1974), 177–218. · Zbl 0309.58017 · doi:10.1070/IM1974v008n01ABEH002101
[5] K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems, Annals of Mathematics, to be published. · Zbl 1196.37057
[6] D. Dolgopyat and A. Wilkinson, Stable accessibility is C 1 dense, Astérisque 287 (2003), 33–60. · Zbl 1213.37053
[7] D. B. A. Epstein, Foliations with all leaves compact, Annales de l’Institut Fourier 26 (1976), 265–282. · Zbl 0313.57017
[8] B. Hasselblatt and Ya. Pesin, Partially Hyperbolic Dynamical Systems, in The Handbook of Dynamical Systems, V.1B (B. Hasselblatt and A. Katok, eds.), Elsevier, Amsterdam, 2005.
[9] M. Hirsch, C. Pugh and M. Shub, Invariant manifolds, Bulletin of the American Mathematical Society 76 (1970), 1015–1019. · Zbl 0226.58009 · doi:10.1090/S0002-9904-1970-12537-X
[10] R. Mañé, Private note (unpublished), 1993.
[11] Ya. Pesin, Families of invariant manifolds corresponding tononzero characteristic exponents, Mathematics of the USSR-Izvestiya 40 (1976), 1261–1305. · Zbl 0383.58012 · doi:10.1070/IM1976v010n06ABEH001835
[12] Ya. Pesin, Lectures on Partial Hyperbolicityand Stable Ergodicity, Zürich Lectures in Advanced Mathematics, EMS, Zürich, 2004.
[13] C. Pugh and M. Shub, Ergodicity of Anosov Actions, Inventiones Mathematicae 15 (1972), 1–23. · Zbl 0236.58007 · doi:10.1007/BF01418639
[14] C. Pugh and M. Shub, Stably ergodic dynamical systems and partial hyperbolicity, Journal of Complexity 13 (1997), 125–179. · Zbl 0883.58025 · doi:10.1006/jcom.1997.0437
[15] D. Ruelle and A. Wilkinson, Absolutely singular dynamicalfoliations, Communications in Mathematical Physics 219 (2001), 481–487. · Zbl 1031.37029 · doi:10.1007/s002200100420
[16] M. Shub and A. Wilkinson, Pathological foliations andremovable zero exponents, Inventiones Mathematicae 139 (2000), 495–508. · Zbl 0976.37013 · doi:10.1007/s002229900035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.