zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the dynamics of the Euler iterative function. (English) Zbl 1137.65027
Summary: The dynamics of Euler’s third-order iterative method which is used to find roots of nonlinear equations applied to complex polynomials of degrees three and four is studied. The conjugacy classes of this method are found explicitly.

65H05Single nonlinear equations (numerical methods)
65E05Numerical methods in complex analysis
30C15Zeros of polynomials, etc. (one complex variable)
Full Text: DOI
[1] Amat, S.; Busquier, S.; Gutiérrez, J. M.: Geometric constructions of iterative functions to solve nonlinear equations. J. comput. Appl. math. 157, No. 1, 197-205 (2003) · Zbl 1024.65040
[2] Amat, S.; Busquier, S.; El Kebir, D.; Molina, J.: A fast Chebyshev’s method for quadratic equations. Appl. math. Comput. 148, No. 2, 461-474 (2004) · Zbl 1038.65045
[3] Amat, S.; Busquier, S.; Plaza, S.: On the dynamics of a family of third-order iterative functions. Anziam j. 48, No. 3, 343-359 (2007) · Zbl 1130.37043
[4] Amat, S.; Busquier, S.; Plaza, S.: Dynamics of a family of third-order iterative methods that do not require using second derivatives. Appl. math. Comput. 154, No. 3, 735-746 (2004) · Zbl 1057.65023
[5] Amat, S.; Busquier, S.; Plaza, S.: Dynamics of the King and jarratt iterations. Aequationes math. 69, No. 3, 212-223 (2005) · Zbl 1068.30019
[6] Argiropoulos, N.; Drakopoulos, V.; Böhm, A.: Julia and Mandelbrot-like sets for higher order könig rational iterative maps. Fractal frontier, 169-178 (1997) · Zbl 1025.37503
[7] Argyros, I. K.: Quadratic equations and applications to Chandrasekhar’s and related equations. Bull. austral. Math. soc. 32, 275-292 (1985) · Zbl 0607.47063
[8] Arney, D. C.; Robinson, B. T.: Exhibiting chaos and fractals with a microcomputer. Comput. math. Appl. 19, No. 3, 1-11 (1990) · Zbl 0728.68131
[9] Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. AMS (new series) 11, No. 1, 85-141 (1984) · Zbl 0558.58017
[10] Candela, V. F.; Marquina, A.: Recurrence relations for rational cubic methods I: The halley method. Computing 44, 169-184 (1990) · Zbl 0701.65043
[11] Candela, V. F.; Marquina, A.: Recurrence relations for rational cubic methods II: The Chebyshev method. Computing 45, 355-367 (1990) · Zbl 0714.65061
[12] Cayley, A.: The Newton -- Fourier imaginary problem. Am. J. Math. 2, 97 (1879) · Zbl 11.0260.02
[13] Cayley, A.: On the Newton -- Fourier imaginary problem. Proc. Cambridge phil. Soc. 3, 231-232 (1880) · Zbl 11.0067.01
[14] Curry, J. H.; Garnett, L.; Sullivan, D.: On the iteration of a rational function: computer experiment with Newton method. Commun. math. Phys. 91, 267-277 (1983) · Zbl 0524.65032
[15] Fang, T.; Guo, F.; Lee, C. F.: A new iteration method with cubic convergence to solve nonlinear equations. Appl. math. Comput. 175, No. 2, 1147-1155 (2006) · Zbl 1093.65047
[16] Gutiérrez, J. M.; Hernández, M. A.; Salanova, M. A.: Quadratic equations in Banach spaces. Numer. func. Anal. optim. 7, No. 1&2, 113-121 (1996) · Zbl 0849.47038
[17] Gutiérrez, J. M.; Hernández, M. A.: A family of Chebyshev -- halley type methods in Banach spaces. Bull. austral. Math. soc. 55, 113-130 (1997) · Zbl 0893.47043
[18] Kneisl, K.: Julia sets for the super-Newton method, Cauchy’s method and halley’s method. Chaos 11, No. 2, 359-370 (2001) · Zbl 1080.65532
[19] Melman, A.: Geometry and convergence of Euler’s and halley’s methods. SIAM rev. 39, No. 4, 728-735 (1997) · Zbl 0907.65045
[20] Milnor, J.: Dynamics in one complex variable: introductory lectures. (1999) · Zbl 0946.30013
[21] Morosawa, S.; Nishimura, Y.; Taniguchi, M.; Ueda, T.: Holomorphic dynamics. (1999) · Zbl 0979.37001
[22] Peitgen, H. O.: Newton’s method and dynamical systems. (1989) · Zbl 0669.00021
[23] Schröder, E. O.: On infinitely many algorithms for solving equations. Math. ann. 2, 317-365 (1870) · Zbl 02.0042.02
[24] Traub, J. F.: Iterative methods for solution of equations. (1964) · Zbl 0121.11204
[25] Vrscay, E.: Julia sets and Mandelbrot-like sets associated with higher order Schröder rational iteration functions: a computer assisted study. Math. comput. 46, No. 173, 151-169 (1986) · Zbl 0597.58013
[26] Vrscay, E.; Gilbert, W.: Extraneous fixed points, basin boundary and chaotic dynamics for Schröder and könig rational iteration functions. Numer. math. 52, 1-16 (1988) · Zbl 0612.30025