zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Iterative solution of fuzzy linear systems. (English) Zbl 1137.65336
One of the major applications using fuzzy number arithmetic is treating linear systems whose parameters are all or partially represented by fuzzy numbers. For solving a general fuzzy linear system, an useful idea proposed by Friedman et al. is the embedding method in which the original fuzzy system is transformed to a doubly-dimensional ordinary system and then a classical iteration such as Jacobi iteration is applied. Using this idea, in this paper, several well-known iterative methods (SOR, AOR, and so on) and their extrapolated form are extended for solving fuzzy linear systems. Convergence theorems are proved. Some numerical examples are presented to illustrate these algorithms.

65F10Iterative methods for linear systems
15A06Linear equations (linear algebra)
Full Text: DOI
[1] Allahviranloo, T.: Numerical methods for fuzzy system of linear equations. Appl. math. Comput. 155, 493-502 (2004) · Zbl 1067.65040
[2] Allahviranloo, T.: Successive overrelaxation iterative method for fuzzy system of linear equations. Appl. math. Comput. 162, 189-196 (2005) · Zbl 1062.65037
[3] Avdelas, G.; Hadjidimos, A.: Optimum accelerated overrelaxation method in a special case. Math. comput. 36, 183-187 (1981) · Zbl 0463.65020
[4] Chang, S. L.; Zadeh, L. A.: On fuzzy mapping and control. IEEE trans., syst. Man cyb. 2, 30-34 (1972) · Zbl 0305.94001
[5] Datta, B. N.: Numerical linear algebra and applications. (1995) · Zbl 1182.65001
[6] Demarr, R.: Nonnegative matrices with nonnegative inverses. Proc. amer. Math. soc., 307-308 (1972) · Zbl 0257.15002
[7] Evans, D. J.: The extrapolated modified aitken iteartion method for solving elliptic difference equations. Comput. J. 6, 193-201 (1963) · Zbl 0119.33404
[8] Friedman, M.; Ming, M.; Kandel, A.: Fuzzy linear systems. Fss 96, 201-209 (1998) · Zbl 0929.15004
[9] Hackbusch, W.: Iterative solution of large sparse systems of equations. (1994) · Zbl 0789.65017
[10] Hadjidimos, A.: Accelerated overrelaxation method. Math. comput. 32, 149-157 (1978) · Zbl 0382.65015
[11] Hageman, L. A.; Young, D. M.: Applied iterative methods. (1981) · Zbl 0459.65014
[12] Kandel, A.; Friedamn, M.; Ming, M.: Fuzzy linear systems and their solution. Ieee, 336-338 (1996)
[13] Kincaid, D.; Cheney, W.: Numerical analysis mathematics of scientific computing. (1991) · Zbl 0745.65001
[14] Ming, M.; Kandel, A.; Friedman, M.: A new approach for defuzzification. Fss 111, 351-356 (2000) · Zbl 0968.93046
[15] Martins, M. Madalena: On an accelerated overrelaxation iterative method for linear systems with strictly diagonally dominant matrix. Math. comput. 152, 1269-1273 (1980) · Zbl 0463.65021
[16] Missirils, N. M.; Evans, D. J.: On the convergence of some generalized preconditioned iterative methods. SIAM J. Numer. anal. 18, 591-596 (1981) · Zbl 0464.65018
[17] Young, D. M.: Iterative solution of large linear systems. (1971) · Zbl 0231.65034
[18] Young, D. M.; Gregory, R. T.: A survey of numerical mathematics. 2 (1973) · Zbl 0262.65002
[19] Zadeh, L. A.: Fuzzy sets. Inform. control 8, 338-353 (1965) · Zbl 0139.24606
[20] Q.L. Zhang, Q.M. Zhu, A. Longden, T. Davis, Fuzzy analogy of linear systems, Program of the Second CEMS Research Student Conference, University of the West of England, 15 October 2003. Available from: <http://www.csm.uwe.ac.uk/xzhang/CRES2003/papers/Leo.pdf>.
[21] Zimmermann, H. -J.: Fuzzy set theory and its applications. (1996) · Zbl 0845.04006