Dang, Quang A.; Ehrhardt, Matthias Adequate numerical solution of air pollution problems by positive difference schemes on unbounded domains. (English) Zbl 1137.65395 Math. Comput. Modelling 44, No. 9-10, 834-856 (2006). Summary: We deal with the numerical solution of some problems of air pollution. Since the problems are posed on unbounded domains we have to introduce artificial boundaries to confine the computational region. We construct and analyse (discrete) transparent boundary conditions for an implicit difference scheme. We discuss the concepts of positivity and monotonicity of difference schemes and briefly consider these properties of difference schemes for advection-diffusion equations arising in problems of air (and water) pollution. The efficiency and accuracy of our method is illustrated by an example. Cited in 15 Documents MSC: 65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs 35K15 Initial value problems for second-order parabolic equations 92D40 Ecology Keywords:air pollution; advection-diffusion equation; monotone difference scheme; positive difference scheme; discrete transparent boundary condition; numerical examples; artificial boundaries PDF BibTeX XML Cite \textit{Q. A. Dang} and \textit{M. Ehrhardt}, Math. Comput. Modelling 44, No. 9--10, 834--856 (2006; Zbl 1137.65395) Full Text: DOI References: [1] Berljand, M. E., Moderne Probleme der atmosphärischen Diffusion und der Verschmutzung der Atmosphäre (1982), Akademie-Verlag: Akademie-Verlag Berlin [2] Marchuk, G. I., (Mathematical Modelling in Environmental Problems. Mathematical Modelling in Environmental Problems, Studies in Mathematics and its Applications, vol. 16 (1986), North-Holland) · Zbl 0597.90001 [3] Cunge, J. A.; Holly, F. M.; Verwey, A., Practical Aspects of Computational River Hydraulics (1980), Pitman Pub. Inc. [5] Quang A, Dang; Van Luoc, Ngo, Numerical solution of a stationary problem of air pollution, Proc. of NCST of Vietnam, 6, 11-23 (1994) [6] Van Luoc, Ngo; Quang A, Dang; Cong Dieu, Nguyen, Analytic and numerical solution of some problems of air pollution, SEA Bull. Math., 105-117 (1993), (special issue) · Zbl 0799.35185 [7] Samarskii, A. A., The Theory of Difference Schemes (2001), Dekker: Dekker New York · Zbl 0971.65076 [8] Yanenko, N. N., The Method of Fractional Steps (1971), Springer-Verlag · Zbl 0209.47103 [9] Wang, H. Q.; Lacroix, M., Optimal weighting in the finite difference solution of the convection-dispersion equation, J. Hydrol., 200, 228-242 (1997) [10] Quang A, Dang; Van Luoc, Ngo, Exact solution of a stationary problem of air pollution, Proc. NCST Vietnam, 4, 39-46 (1992) [11] Strikwerda, J. C., Finite Difference Schemes and Partial Differential Equations (1989), Wadsworth & Brooks/Cole · Zbl 0681.65064 [12] Kreiss, H.-O.; Lorenz, J., Initial-Boundary Value Problems and the Navier-Stokes Equations (1989), Academic Press [13] Marchuk, G. I., Methods of Numerical Mathematics (1975), Springer: Springer New York · Zbl 0329.65002 [14] Paskonov, V. M.; Polezhaev, V. I.; Chudov, L. A., Numerical Modelling of Heat and Mass Transfer (1984), Nauka: Nauka Moscow, (in Russian) · Zbl 0565.65061 [15] Friedrichs, K. O., Symmetric hyperbolic linear differential equations, Commun. Pure Appl. Math., 7, 345-392 (1954) · Zbl 0059.08902 [16] Matus, P., The maximum principle and some of its applications, Comput. Methods Appl. Math., 2, 50-91 (2002) · Zbl 0995.65090 [18] Halpern, L., Artificial BC’s for the linear advection diffusion equation, Math. Comp., 46, 425-438 (1986) · Zbl 0649.35041 [19] Lohéac, J.-P., An artificial boundary condition for an advection-diffusion problem, Math. Methods Appl. Sci., 14, 155-175 (1991) · Zbl 0733.35049 [21] Ehrhardt, M., Discrete transparent boundary conditions for parabolic equations, Z. Angew. Math. Mech., 77, S2, 543-544 (1997) · Zbl 0900.65297 [23] Gautschi, W., Computational aspects of three-term recurrence relations, SIAM Rev., 9, 24-82 (1967) · Zbl 0168.15004 [25] Arnold, A.; Ehrhardt, M.; Sofronov, I., Discrete transparent boundary conditions for the Schrödinger equation: Fast calculation, approximation, and stability, Commun. Math. Sci., 1, 501-556 (2003) · Zbl 1085.65513 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.