## Numerical method for solving linear Fredholm fuzzy integral equations of the second kind.(English)Zbl 1137.65442

Summary: We use a parametric form of fuzzy numbers and convert a linear fuzzy Fredholm integral equation to two systems of linear integral equation of the second kind in crisp case. We use one of the numerical methods such as Nyström and find the approximation solution of the system and hence obtain an approximation for the fuzzy solution of linear fuzzy Fredholm integral equations of the second kind. The proposed method is illustrated by solving some numerical examples.

### MSC:

 65R20 Numerical methods for integral equations 26E50 Fuzzy real analysis 45N05 Abstract integral equations, integral equations in abstract spaces

FUSIM
Full Text:

### References:

 [1] Abbasbandy, S.; Allah Viranloo, T., Numerical solution of fuzzy differential equation by Runge-Kutta method, Nonlinear Stud, 11, 117-129 (2004) · Zbl 1056.65069 [2] Abbasbandy, S.; Allah Viranloo, T.; López-Pouso, Óscar; Nieto, J. J., Numerical methods for fuzzy differential inclusions, Comput Math Appl, 48, 1633-1641 (2004) · Zbl 1074.65072 [3] Abbasbandy, S.; Nieto, J. J.; Alavi, M., Tuning of reachable set in one dimensional fuzzy differential inclusions, Chaos, Solitons & Fractals, 26, 1337-1341 (2005) · Zbl 1073.65054 [4] Babolian, E.; Sadeghi Goghary, H.; Abbasbandy, S., Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method, Appl Math Comput, 161, 733-744 (2005) · Zbl 1062.65143 [5] Buckley, J. J., Fuzzy eigenvalues and input-output analysis, Fuzzy Sets Syst, 34, 187-195 (1990) · Zbl 0687.90021 [6] Buckley, J. J., Solving fuzzy equations, Fuzzy Sets Syst, 50, 1-14 (1992) · Zbl 0788.04005 [7] Caldas, M.; Jafari, S., $$θ$$-Compact fuzzy topological spaces, Chaos, Solitons & Fractals, 25, 229-232 (2005) · Zbl 1070.54501 [8] Chang, S. L.; Zadeh, L. A., On fuzzy mapping and control, IEEE Trans Syst Man Cybernet, 2, 30-34 (1972) · Zbl 0305.94001 [9] Delves, L. M.; Mohamed, J. L., Computational methods for integral equations (1985), Cambridge University Press · Zbl 0592.65093 [10] Ding, Z.; Kandel, A., Existence and stability of fuzzy differential equations, J Fuzzy Math, 5, 681-697 (1997) · Zbl 0884.34066 [11] Dubois, D.; Prade, H., Towards fuzzy differential calculus, Fuzzy Sets Syst, 8, 1-7 (1982), 105-116, 225-233 · Zbl 0493.28002 [12] Dubois, D.; Prade, H., Fuzzy number: an overview, (Bezdek, J. C., The analysis of fuzzy information. The analysis of fuzzy information, Mathematics, vol. 1 (1987), CRC Press: CRC Press Boca Raton, FL), 3-39 [13] El Naschie, M. S., A review of $$E$$-infinity theory and the mass spectrum of high energy particle physics, Chaos, Solitons & Fractals, 19, 209-236 (2004) · Zbl 1071.81501 [14] El Naschie, M. S., On a fuzzy Kãhler manifold which is consistent with the two slit experiment, Int J Nonlinear Sci Numer Simul, 6, 95-98 (2005) [15] Elnaschie, M. S., The concepts of $$E$$ infinity: an elementary introduction to the Cantorian-fractal theory of quantum physics, Chaos, Solitons & Fractals, 22, 495-511 (2004) · Zbl 1063.81582 [16] Feng, G.; Chen, G., Adaptive control of discrete-time chaotic systems: a fuzzy control approach, Chaos, Solitons & Fractals, 23, 459-467 (2005) · Zbl 1061.93501 [17] Friedman, M.; Ma, M.; Kandel, A., Numerical solutions of fuzzy differential and integral equations, Fuzzy Sets Syst, 106, 35-48 (1999) · Zbl 0931.65076 [18] Goetschel, R.; Vaxman, W., A pseudometric for fuzzy sets and certain related result, J Math Anal Appl, 81, 507-523 (1981) · Zbl 0505.54008 [19] Goetschel, R.; Vaxman, W., Topological properties of fuzzy numbers, Fuzzy Sets Syst, 10, 87-99 (1983) · Zbl 0521.54001 [20] Goetschel, R.; Vaxman, W., Eigen fuzzy number sets, Fuzzy Sets Syst, 16, 75-85 (1985) · Zbl 0581.04007 [21] Goetschel, R.; Vaxman, W., Elementary calculus, Fuzzy Sets Syst, 18, 31-43 (1986) [22] Heshmaty, B.; Kandel, A., Fuzzy linear regression and its applications to forecasting in uncertain environments, Fuzzy Sets Syst, 15, 159-191 (1985) · Zbl 0566.62099 [23] Hochstadt, H., Integral equations (1973), Wiley: Wiley New York · Zbl 0137.08601 [24] Jiang, W.; Guo-Dong, Q.; Bin, D., $$H_∞$$ variable universe adaptive fuzzy control for chaotic system, Chaos, Solitons & Fractals, 24, 1075-1086 (2005) · Zbl 1083.93013 [25] Kaleva, O., Fuzzy differential equations, Fuzzy Sets Syst, 24, 301-317 (1987) · Zbl 0646.34019 [26] Klir, G. J.; Clair, U. S.; Yuan, B., Fuzzy set theory: foundations and applications (1997), Prentice-Hall Inc. [27] Ma, M.; Friedman, M.; Kandel, A., A new fuzzy arithmetic, Fuzzy Sets Syst, 108, 83-90 (1999) · Zbl 0937.03059 [29] Negoita, C. V.; Ralescu, D. A., Applications of fuzzy sets to systems analysis (1975), Wiley: Wiley New York · Zbl 0326.94002 [30] Park, J. H., Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, 22, 1039-1046 (2004) · Zbl 1060.54010 [31] Puri, M. L.; Ralescu, D., Fuzzy random variables, J Math Anal Appl, 114, 409-422 (1986) · Zbl 0592.60004 [32] Tanaka, Y.; Mizuno, Y.; Kado, T., Chaotic dynamics in the Friedman equation, Chaos, Solitons & Fractals, 24, 407-422 (2005) · Zbl 1070.83535 [33] Vrba, J., A note on inverses in arithmetic with fuzzy numbers, Fuzzy Sets Syst, 50, 267-278 (1992) [34] Congxin, W.; Ming, M., On the integrals, series and integral equations of fuzzy set-valued functions, J Harbin Inst Technol, 21, 11-19 (1990) · Zbl 0970.26519 [35] Congxin, W.; Ming, M., On embedding problem of fuzzy number spaces, Fuzzy Sets Syst, 44, 33-38 (1991), 45(1992) 189-202, 46 (1992) 281-6 · Zbl 0757.46066 [36] Yager, R. R., Fuzzy prediction based upon regression models, Inform Sci, 26, 45-63 (1982) · Zbl 0509.62087 [37] Renhong, Z.; Govind, R., Solutions of algebraic equations involving generalized fuzzy number, Inform Sci, 56, 199-243 (1991) · Zbl 0726.65048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.