Eulerian shape design sensitivity analysis and optimization with a fixed grid. (English) Zbl 1137.74415

Summary: Conventional shape optimization based on the finite element method uses Lagrangian representation in which the finite element mesh moves according to shape change, while modern topology optimization uses Eulerian representation. In this paper, an approach to shape optimization using Eulerian representation such that the mesh distortion problem in the conventional approach can be resolved is proposed. A continuum geometric model is defined on the fixed grid of finite elements. An active set of finite elements that defines the discrete domain is determined using a procedure similar to topology optimization, in which each element has a unique shape density. The shape design parameter that is defined on the geometric model is transformed into the corresponding shape density variation of the boundary elements. Using this transformation, it has been shown that the shape design problem can be treated as a parameter design problem, which is a much easier method than the former. A detailed derivation of how the shape design velocity field can be converted into the shape density variation is presented along with sensitivity calculation. Very efficient sensitivity coefficients are calculated by integrating only those elements that belong to the structural boundary. The accuracy of the sensitivity information is compared with that derived by the finite difference method with excellent agreement. Two design optimization problems are presented to show the feasibility of the proposed design approach.


74P15 Topological methods for optimization problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics


Full Text: DOI


[1] Haftka, R. T.; Grandhi, R. V., Structural shape optimization—a survey, Comput. Methods Appl. Mech. Engrg., 57, 1, 91-106 (1986) · Zbl 0578.73080
[2] Hardee, E.; Chang, K. H.; Tu, J.; Choi, K. K.; Grindeanu, I.; Yu, X. M., A CAD-based design parameterization for shape optimization of elastic solids, Adv. Engrg. Software, 30, 3, 185-199 (1999)
[3] Olhoff, N.; Bendsøe, M. P.; Rasamussen, J., On CAD-integrated structural topology and design optimization, Comput. Methods Appl. Mech. Engrg., 89, 259-279 (1991)
[4] Bennett, J. A.; Botkin, M. E., Structural shape optimization with geometric description and adaptive mesh refinement, AIAA J., 23, 3, 458-464 (1985)
[5] Suzuki, K.; Kikuchi, N., A homogenization method for shape and topology optimization, Comput. Methods Appl. Mech. Engrg., 93, 3, 291-318 (1991) · Zbl 0850.73195
[6] Bendsøe, M. P., Optimization of structural topology, shape, and material (1995), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 0822.73001
[7] García, M. J.; Steven, G. P., Fixed grid finite elements in elasticity problems, Engrg. Comput., 16, 2, 145-164 (1999) · Zbl 0948.74059
[10] Woon, S. Y.; Tong, L.; Querin, O. M.; Steven, G. P., Knowledge-based algorithms in fixed-grid GA shape optimization, Int. J. Numer. Methods Engrg., 58, 643-660 (2003) · Zbl 1032.74644
[11] Kim, H.; Querin, O. M.; Steven, G. P.; Xie, Y. M., Improving efficiency of evolutionary structural optimization by implementing fixed grid mesh, Struct. Multidisc. Optim., 24, 441-448 (2003)
[12] Choi, K. K.; Chang, K. H., A study of design velocity field computation for shape optimal design, Finite Elem. Anal. Des., 15, 317-341 (1994) · Zbl 0801.73067
[13] Salagame, R. R.; Belegundu, A. D., Distortion, degeneracy and rezoning in finite elements—a survey, Sadhana—Acad. Proc. Engrg. Sci., 19, 311-335 (1994) · Zbl 1048.74592
[14] Zienkiewicz, O. C.; Zhu, J. Z., Adaptivity and mesh generation, Int. J. Numer. Methods Engrg., 32, 4, 783-810 (1991) · Zbl 0755.65119
[15] Sienz, J.; Hinton, E., Reliable structural optimization with error estimation adaptivity and robust sensitivity analysis, Comput. Struct., 64, 1-4, 31-63 (1997) · Zbl 0921.73208
[16] Terada, K.; Miura, T.; Kikuchi, N., Digital image-based modeling applied to the homogenization analysis of composite materials, Comput. Mech., 20, 4, 331-346 (1997) · Zbl 0898.73045
[17] Sigmund, O., A 99 line topology optimization code with the Matlab, Struct. Multidisc. Optim., 21, 120-127 (2001)
[18] Hughes, T. J.R., The finite element method linear static and dynamic finite element analysis (1987), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0634.73056
[19] Clark, B. W.; Anderson, D. C., The penalty boundary method, Finite Elem. Anal. Des., 39, 387-401 (2003) · Zbl 1057.74040
[20] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int. J. Numer. Methods Engrg., 37, 2, 229-256 (1994) · Zbl 0796.73077
[22] Choi, K. K.; Haug, E. J., Shape design sensitivity analysis of elastic structures, J. Struct. Mech., 11, 231-269 (1983)
[23] Haug, E. J.; Choi, K. K., Methods of engineering mathematics (1993), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0471.49022
[24] Kim, N. H.; Choi, K. K.; Botkin, M. E., Numerical method for shape optimization using meshfree method, Struct. Multidisc. Optim., 24, 6, 418-429 (2003)
[25] Jang, G. W.; Kim, Y. Y.; Choi, K. K., Remesh-free shape optimization using the wavelet-Galerkin method, Int. J. Solids Struct., 41, 22-23, 6465-6483 (2004) · Zbl 1179.74099
[26] Duysinx, P.; Bendsøe, M. P., Topology optimization of continuum structures with local stress constraints, Int. J. Numer. Methods Engrg., 43, 1453-1478 (1998) · Zbl 0924.73158
[27] Vanderplaats, G. N., DOT User’s Manual (1997), VMA Corp.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.