zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Eulerian shape design sensitivity analysis and optimization with a fixed grid. (English) Zbl 1137.74415
Summary: Conventional shape optimization based on the finite element method uses Lagrangian representation in which the finite element mesh moves according to shape change, while modern topology optimization uses Eulerian representation. In this paper, an approach to shape optimization using Eulerian representation such that the mesh distortion problem in the conventional approach can be resolved is proposed. A continuum geometric model is defined on the fixed grid of finite elements. An active set of finite elements that defines the discrete domain is determined using a procedure similar to topology optimization, in which each element has a unique shape density. The shape design parameter that is defined on the geometric model is transformed into the corresponding shape density variation of the boundary elements. Using this transformation, it has been shown that the shape design problem can be treated as a parameter design problem, which is a much easier method than the former. A detailed derivation of how the shape design velocity field can be converted into the shape density variation is presented along with sensitivity calculation. Very efficient sensitivity coefficients are calculated by integrating only those elements that belong to the structural boundary. The accuracy of the sensitivity information is compared with that derived by the finite difference method with excellent agreement. Two design optimization problems are presented to show the feasibility of the proposed design approach.

MSC:
74P15Topological methods in solid mechanics
74S05Finite element methods in solid mechanics
Software:
DOT; UMFPACK
WorldCat.org
Full Text: DOI
References:
[1] Haftka, R. T.; Grandhi, R. V.: Structural shape optimization--a survey. Comput. methods appl. Mech. engrg. 57, No. 1, 91-106 (1986) · Zbl 0578.73080
[2] Hardee, E.; Chang, K. H.; Tu, J.; Choi, K. K.; Grindeanu, I.; Yu, X. M.: A CAD-based design parameterization for shape optimization of elastic solids. Adv. engrg. Software 30, No. 3, 185-199 (1999)
[3] Olhoff, N.; Bendsøe, M. P.; Rasamussen, J.: On CAD-integrated structural topology and design optimization. Comput. methods appl. Mech. engrg. 89, 259-279 (1991)
[4] Bennett, J. A.; Botkin, M. E.: Structural shape optimization with geometric description and adaptive mesh refinement. Aiaa j. 23, No. 3, 458-464 (1985)
[5] Suzuki, K.; Kikuchi, N.: A homogenization method for shape and topology optimization. Comput. methods appl. Mech. engrg. 93, No. 3, 291-318 (1991) · Zbl 0850.73195
[6] Bendsøe, M. P.: Optimization of structural topology, shape, and material. (1995) · Zbl 0822.73001
[7] García, M. J.; Steven, G. P.: Fixed grid finite elements in elasticity problems. Engrg. comput. 16, No. 2, 145-164 (1999) · Zbl 0948.74059
[8] M.J. García, G.P. Steven, Fixed grid finite element analysis in structural design and optimization, Proc. 2nd ASMO/AIAA Internet Conf. Approx. Fast Reanal. Engrg. Optim., 2000. Available from: <http://www-tm.wbmt.tudelft.nl/ wbtmavk/2aro_conf>.
[9] K. Horimatsu, N. Kikuchi, A shape optimization method based on fixed grid analysis, IACM Third World Congress in Computational Mechanics, 1994, vol. II, pp. 1070-1071.
[10] Woon, S. Y.; Tong, L.; Querin, O. M.; Steven, G. P.: Knowledge-based algorithms in fixed-grid GA shape optimization. Int. J. Numer. methods engrg. 58, 643-660 (2003) · Zbl 1032.74644
[11] Kim, H.; Querin, O. M.; Steven, G. P.; Xie, Y. M.: Improving efficiency of evolutionary structural optimization by implementing fixed grid mesh. Struct. multidisc. Optim. 24, 441-448 (2003)
[12] Choi, K. K.; Chang, K. H.: A study of design velocity field computation for shape optimal design. Finite elem. Anal. des. 15, 317-341 (1994) · Zbl 0801.73067
[13] Salagame, R. R.; Belegundu, A. D.: Distortion, degeneracy and rezoning in finite elements--a survey. Sadhana--acad. Proc. engrg. Sci. 19, 311-335 (1994) · Zbl 1048.74592
[14] Zienkiewicz, O. C.; Zhu, J. Z.: Adaptivity and mesh generation. Int. J. Numer. methods engrg. 32, No. 4, 783-810 (1991) · Zbl 0755.65119
[15] Sienz, J.; Hinton, E.: Reliable structural optimization with error estimation adaptivity and robust sensitivity analysis. Comput. struct. 64, No. 1-4, 31-63 (1997) · Zbl 0921.73208
[16] Terada, K.; Miura, T.; Kikuchi, N.: Digital image-based modeling applied to the homogenization analysis of composite materials. Comput. mech. 20, No. 4, 331-346 (1997) · Zbl 0898.73045
[17] Sigmund, O.: A 99 line topology optimization code with the Matlab. Struct. multidisc. Optim. 21, 120-127 (2001)
[18] Hughes, T. J. R.: The finite element method linear static and dynamic finite element analysis. (1987) · Zbl 0634.73056
[19] Clark, B. W.; Anderson, D. C.: The penalty boundary method. Finite elem. Anal. des. 39, 387-401 (2003)
[20] Belytschko, T.; Lu, Y. Y.; Gu, L.: Element-free Galerkin methods. Int. J. Numer. methods engrg. 37, No. 2, 229-256 (1994) · Zbl 0796.73077
[21] T.A. Davis, UMFPACK 4.1 User Guide, Univ. of Florida, 2003.
[22] Choi, K. K.; Haug, E. J.: Shape design sensitivity analysis of elastic structures. J. struct. Mech. 11, 231-269 (1983)
[23] Haug, E. J.; Choi, K. K.: Methods of engineering mathematics. (1993) · Zbl 0785.00003
[24] Kim, N. H.; Choi, K. K.; Botkin, M. E.: Numerical method for shape optimization using meshfree method. Struct. multidisc. Optim. 24, No. 6, 418-429 (2003)
[25] Jang, G. W.; Kim, Y. Y.; Choi, K. K.: Remesh-free shape optimization using the wavelet-Galerkin method. Int. J. Solids struct. 41, No. 22-23, 6465-6483 (2004) · Zbl 1179.74099
[26] Duysinx, P.; Bendsøe, M. P.: Topology optimization of continuum structures with local stress constraints. Int. J. Numer. methods engrg. 43, 1453-1478 (1998) · Zbl 0924.73158
[27] Vanderplaats, G. N.: DOT user’s manual. (1997)