zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Allee effects on population dynamics with delay. (English) Zbl 1137.92364
Summary: We study the stability analysis of equilibrium points of population dynamics with delay when the Allee effect occurs at low population density. Mainly, our mathematical results and numerical simulations point to the stabilizing effect of the Allee effects on population dynamics with delay.

92D25Population dynamics (general)
37N25Dynamical systems in biology
39A11Stability of difference equations (MSC2000)
39A10Additive difference equations
Full Text: DOI
[1] Adimy, M.; Crauste, F.; Halanay, A.; Neamtu, M.; Opriş, D.: Stability of limit cycles in a pluripotent stem cell dynamics model, Chaos, solitons & fractals 27, 1091-1107 (2006) · Zbl 1079.92022 · doi:10.1016/j.chaos.2005.04.083
[2] Allee, W. C.: Animal aggretions: a study in general sociology, (1931)
[3] Beddington, J. R.: Age distribution and the stability of simple discrete time population models, J theor biol 47, 65-74 (1974)
[4] Birkhead, T. R.: The effect of habitat and density on breeding success in the common guillemot (uria aalge), J anim ecol 46, 751-764 (1977)
[5] Chen, J.; Blackmore, D.: On the exponentially self-regulating population model, Chaos, solitons & fractals 14, 1433-1450 (2002) · Zbl 1031.92021
[6] Cunningham, K.; Kulenović, M. R. S.; Ladas, G.; Valicenti, S. V.: On the recursive sequences xn+1=($\alpha +\beta $xn)/(Bxn+Cxn - 1), Nonlinear anal 47, 4603-4614 (2001) · Zbl 1042.39522 · doi:10.1016/S0362-546X(01)00573-9
[7] Doebeli, M.; Koella, J. C.: Sex and population dynamics, Proc roy soc lond B 257, 17-23 (1994)
[8] Fowler, M. S.; Ruxton, G. D.: Population dynamic consequences of allee effects, J theor biol 215, 39-46 (2002)
[9] Gao, S.; Chen, L.: The effect of seasonal harvesting on a single-species discrete population model with stage structure and birth pulses, Chaos, solitons & fractals 24, 1013-1023 (2005) · Zbl 1061.92059 · doi:10.1016/j.chaos.2004.09.091
[10] Hadjiavgousti, D.; Ichtiaroglou, S.: Existence of stable localized structures in population dynamics through the allee effect, Chaos, solitons & fractals 21, 119-131 (2004) · Zbl 1049.92031 · doi:10.1016/j.chaos.2003.10.002
[11] Kulenović, M. R. S.; Ladas, G.; Prokup, N. R.: A rational difference equation, Comput math appl 41, 671-678 (2001) · Zbl 0985.39017 · doi:10.1016/S0898-1221(00)00311-4
[12] Lakshmi, B. S.: Population models with time-dependent parameters, Chaos, solitons & fractals 26, 719-721 (2005) · Zbl 1081.92033 · doi:10.1016/j.chaos.2005.01.034
[13] Leach, P. L. G.; Andriopoulos, K.: An oscillatory population model, Chaos, solitons & fractals 22, 183-188 (2004) · Zbl 1063.92043
[14] Li, C.; Liao, X.; Wong, K.: Bifurcation of the exponentially self-regulating population model, Chaos, solitons & fractals 20, 479-487 (2004) · Zbl 1048.37075 · doi:10.1016/S0960-0779(03)00407-7
[15] López-Ruiz, R.; Fournier-Prunaret, D.: Indirect allee effect, bistability and chaotic oscillations in a predator-prey discrete model of logistic type, Chaos, solitons & fractals 24, 85-101 (2005) · Zbl 1066.92053 · doi:10.1016/j.chaos.2004.07.018
[16] Mccarthy, M. A.: The allee effect, finding mates and theoretical models, Ecol model 103, 99-102 (1997)
[17] Murray, J. D.: Mathematical biology, (1993) · Zbl 0779.92001
[18] Peng, M.: Multiple bifurcations and periodic bubbling in a delay population model, Chaos, solitons & fractals 25, 1123-1130 (2005) · Zbl 1065.92035 · doi:10.1016/j.chaos.2004.11.087
[19] Rai, V.; Upadhyay, R. K.: Chaotic population dynamics and biology of the top-predator, Chaos, solitons & fractals 21, 1195-1204 (2004) · Zbl 1057.92056 · doi:10.1016/j.chaos.2003.12.065
[20] Rao, V. S. H.; Rao, P. R. S.: Mathematical models and stabilizing bio-control mechanisms for microbial populations in a cultured environment, Chaos, solitons & fractals 28, 1222-1251 (2006) · Zbl 1095.92070 · doi:10.1016/j.chaos.2005.07.015
[21] Scheuring, I.: Allee effect increases the dynamical stability of populations, J theor biol 199, 407-414 (1999)
[22] Summers, D.; Cranford, J. G.; Healey, B. P.: Chaos in periodically forced discrete-time ecosystem models, Chaos, solitons & fractals 11, 2331-2342 (2000) · Zbl 0964.92044 · doi:10.1016/S0960-0779(99)00154-X
[23] Tung, W. W.; Qi, Y.; Gao, J. B.; Cao, Y.; Billings, L.: Direct characterization of chaotic and stochastic dynamics in a population model with strong periodicity, Chaos, solitons & fractals 24, 645-652 (2005) · Zbl 1066.92043 · doi:10.1016/j.chaos.2004.09.076
[24] Zhou, S. R.; Liu, Y. F.; Wang, G.: The stability of predator-prey systems subject to the allee effects, Theor population biol 67, 23-31 (2005) · Zbl 1072.92060 · doi:10.1016/j.tpb.2004.06.007