An ISS-modular approach for adaptive neural control of pure-feedback systems. (English) Zbl 1137.93367

Summary: Controlling non-affine non-linear systems is a challenging problem in control theory. In this paper, we consider adaptive neural control of a completely non-affine pure-feedback system using radial basis function neural networks. An ISS-modular approach is presented by combining adaptive neural design with the backstepping method, Input-to-State Stability (ISS) analysis and the small-gain theorem. The difficulty in controlling the non-affine pure-feedback system is overcome by achieving the so-called “ISS-modularity” of the controller-estimator. Specifically, a neural controller is designed to achieve ISS for the state error subsystem with respect to the neural weight estimation errors, and a neural weight estimator is designed to achieve ISS for the weight estimation subsystem with respect to the system state errors. The stability of the entire closed-loop system is guaranteed by the small-gain theorem. The ISS-modular approach provides an effective way for controlling non-affine non-linear systems. Simulation studies are included to demonstrate the effectiveness of the proposed approach.


93C40 Adaptive control/observation systems
93C10 Nonlinear systems in control theory
93B52 Feedback control
93D25 Input-output approaches in control theory
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI


[1] Apostol, T. M., Mathematical analysis (1963), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0126.28202
[2] Choi, J. Y.; Farrell, J. A., Adaptive observer backstepping control using neural networks, IEEE Transactions on Neural Networks, 12, 5, 1103-1112 (2001)
[3] Christofides, P. D.; Teel, A. R., Singular perturbations and input-to-state stability, IEEE Transactions on Automatic Control, 41, 11, 1645-1650 (1996) · Zbl 0864.93086
[4] Dong, X.; Chen, G.; Chen, L., Adaptive control of the uncertain Duffing oscillator, International Journal of Bifurcation and Chaos, 7, 7, 1651-1658 (1997) · Zbl 0967.93512
[5] Ferrara, A.; Giacomini, L., Control of a class of mechanical systems with uncertainties via a constructive adaptive/second order VSC approach, Transactions of ASME, Journal of Dynamic Systems, Measurement and Control, 122, 1, 33-39 (2000)
[6] Ge, S. S.; Hang, C. C.; Lee, T. H.; Zhang, T., Stable adaptive neural network control (2001), Kluwer Academic: Kluwer Academic Norwell, USA · Zbl 1001.93002
[7] Ge, S. S.; Wang, C., Direct adaptive NN control of a class of nonlinear systems, IEEE Transactions on Neural Networks, 13, 1, 214-221 (2002)
[8] Ge, S. S.; Wang, C., Adaptive NN control of uncertain nonlinear pure-feedback systems, Automatica, 38, 671-682 (2002) · Zbl 0998.93025
[9] Haykin, S., Neural networks: A comprehensive foundation (1999), Prentice-Hall: Prentice-Hall New Jersey · Zbl 0934.68076
[10] Hill, D. J., A generalization of the small-gain theorem for nonlinear feedback systems, Automatica, 27, 1043-1045 (1991)
[11] Hunt, L. R.; Meyer, G., Stable inversion for nonlinear systems, Automatica, 33, 1549-1554 (1997) · Zbl 0890.93046
[12] Isidori, A., Nonlinear control systems II (1999), Springer: Springer London · Zbl 0924.93038
[13] Jiang, Z. P.; Teel, A. R.; Praly, L., Small-gain theorem for ISS systems and applications, Mathematics of Control, Signals, and Systems, 7, 95-120 (1994) · Zbl 0836.93054
[14] Kanellakopoulos, I.; Kokotovic, P. V.; Morse, A. S., Systematic design of adaptive controller for feedback linearizable systems, IEEE Transactions on Automatic Control, 36, 11, 1241-1253 (1991) · Zbl 0768.93044
[15] Kokotovic, P.; Arcak, M., Constructive nonlinear control: A historical perspective, Automatica, 37, 637-662 (2001) · Zbl 1153.93301
[16] Krstic, M.; Kanellakopoulos, I.; Kokotovic, P., Nonlinear and adaptive control design (1995), Wiley: Wiley New York · Zbl 0763.93043
[17] Kurdila, A. J.; Narcowich, F. J.; Ward, J. D., Persistency of excitation in identification using radial basis function approximants, SIAM Journal of Control and Optimization, 33, 2, 625-642 (1995) · Zbl 0831.93015
[18] Kwan, C.; Lewis, F. L., Robust backstepping control of nonlinear systems using neural networks, IEEE Transactions on Systems, Man and Cybernetics, Part A, 30, 753-766 (2000)
[19] Lewis, F. L.; Jagannathan, S.; Yeildirek, A., Neural network control of robot manipulators and nonlinear systems (1999), Taylor & Francis: Taylor & Francis London
[21] Mareels, I. M.Y.; Hill, D. J., Monotone stability of nonlinear feedback systems, Journal of Mathematical Systems, Estimation, and Control, 2, 275-291 (1992) · Zbl 0776.93039
[22] Polycarpou, M. M.; Mears, M. J., Stable adaptive tracking of uncertain systems using nonlinearly parametrized on-line approximators, International Journal of Control, 70, 3, 363-384 (1998) · Zbl 0945.93563
[23] Seto, D.; Annaswamy, A. M.; Baillieul, J., Adaptive control of nonlinear systems with a triangular structure, IEEE Transactions on Automatic Control, 39, 1411-1428 (1994) · Zbl 0806.93034
[24] Sontag, E. D., Smooth stabilization implies coprime factorization, IEEE Transactions on Automatic Control, 34, 435-443 (1989) · Zbl 0682.93045
[25] Sontag, E. D.; Wang, Y., New characterizations of input-to-state stability, IEEE Transactions on Automatic Control, 41, 1283-1294 (1996) · Zbl 0862.93051
[26] Vidyasagar, M., Nonlinear systems analysis (1993), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0900.93132
[27] Wang, D.; Huang, J., Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form, Automatica, 38, 1365-1372 (2002) · Zbl 0998.93026
[28] Zhang, Y.; Peng, P. Y.; Jiang, Z. P., Stable neural controller design for unknown nonlinear systems using backstepping, IEEE Transactions on Neural Networks, 11, 1347-1359 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.