Tunç, Cemil; Tunç, Ercan New ultimate boundedness and periodicity results for certain third-order nonlinear vector differential equations. (English) Zbl 1138.34322 Math. J. Okayama Univ. 48, 159-172 (2006). Consider the vector differential equation \[ \dddot x+ F(x,\dot x, \ddot x)\ddot x+ g(\dot x)+ h(x)= p(t,x,\dot x,\ddot x)\tag{\(*\)} \] with \(x\in\mathbb{R}^n\), \(F\) is a continuous symmetric \(n\times n\)-matrix, \(g: \mathbb{R}^n\to \mathbb{R}^n\), \(h: \mathbb{R}^n\to \mathbb{R}^n\), \(p: \mathbb{R}\times \mathbb{R}^n\times \mathbb{R}^n\times \mathbb{R}^n\to \mathbb{R}^n\) are continuous functions with \(h(0)= g(0)= 0\). The authors give conditions such that all solutions of \((*)\) are ultimately bounded and that there is a periodic solution with the same period as \(p\). Reviewer: Klaus R. Schneider (Berlin) Cited in 10 Documents MSC: 34C25 Periodic solutions to ordinary differential equations 34D40 Ultimate boundedness (MSC2000) PDF BibTeX XML Cite \textit{C. Tunç} and \textit{E. Tunç}, Math. J. Okayama Univ. 48, 159--172 (2006; Zbl 1138.34322)