×

On fuzzy real-valued double sequence space \(_2 \ell _F ^p\). (English) Zbl 1138.46048

Summary: We introduce the fuzzy real-valued double sequence space \(_2 \ell _F ^p\). We study different properties of the space such as completeness, solidity, symmetry, convergence free, sequence algebra, etc. We prove some inclusion results, too.

MSC:

46S40 Fuzzy functional analysis
46A45 Sequence spaces (including Köthe sequence spaces)
40A05 Convergence and divergence of series and sequences
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bromwich, T. J.I’A., An Introduction to the Theory of Infinite Series (1965), Macmillan & Co.: Macmillan & Co. New York
[2] Basarir, M.; Sonalcan, O., On some double sequence spaces, J. Indian Acad. Math., 21, 2, 193-200 (1999) · Zbl 0978.40002
[3] Hardy, G. H., On the convergence of certain multiple series, Proc. Cambridge Philos. Soc., 19, 86-95 (1917)
[4] Kaleva, O.; Seikkala, S., On fuzzy metric spaces, Fuzzy Sets and Systems, 12, 215-229 (1984) · Zbl 0558.54003
[5] Moričz, F., Extention of spaces \(c\) and \(c_0\) from single to double sequences, Acta Math. Hungar., 57, 1-2, 129-136 (1991) · Zbl 0781.46025
[6] Moričz, F.; Rhoades, B. E., Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Cambridge Philos. Soc., 104, 283-294 (1988) · Zbl 0675.40004
[7] Nanda, S., On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33, 123-126 (1989) · Zbl 0707.54003
[8] Nuray, F.; Savas, E., Statistical convergence of sequences of fuzzy real numbers, Math. Slovaca, 45, 3, 269-273 (1995) · Zbl 0852.40003
[9] Savas, E., A note on sequence of fuzzy numbers, Inform. Sci., 124, 297-300 (2000) · Zbl 0951.26014
[10] Tripathy, B. C., A class of difference sequences related to the \(p\)-normed spaces \(\ell^p\), Demonstratio Math., 36, 4, 867-872 (2003) · Zbl 1042.40001
[11] Tripathy, B. K.; Nanda, S., Absolute value of fuzzy real numbers and fuzzy sequence spaces, J. Fuzzy Math., 8, 4, 883-892 (2000) · Zbl 1012.46064
[12] Tripathy, B. C., Statistically convergent double sequences, Tamkang J. Math, 34, 3, 231-237 (2003) · Zbl 1040.40001
[13] Tripathy, B. K.; Tripathy, B. C., On \(I\)-convergent double sequences, Soochow J. Math., 31, 4, 549-560 (2005) · Zbl 1083.40002
[14] Tripathy, B. C.; Sarma, B., Statistically convergent double sequence spaces defined by Orlicz functions, Soochow J. Math., 32, 211-221 (2006) · Zbl 1122.40001
[15] Zadeh, L. A., Fuzzy sets, Inform. Control, 8, 338-353 (1965) · Zbl 0139.24606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.