zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The decomposition method for Cauchy advection-diffusion problems. (English) Zbl 1138.65307
Summary: The solution of Cauchy problems for the advection-diffusion equation is obtained using the decomposition method. In the case when the flow velocity is constant, an analytical solution can be derived, whilst for variable flow velocity, symbolic numerical computations need to be performed.

65M70Spectral, collocation and related methods (IVP of PDE)
35K15Second order parabolic equations, initial value problems
35K20Second order parabolic equations, initial boundary value problems
76M99Basic methods in fluid mechanics
Full Text: DOI
[1] Smith, W. R.; Wake, G. C.; Mcintosh, J. E. A.; Mcintosh, R. P.; Pettigrew, M.; Kao, R.: Mathematical analysis of perifusion data: models predicting elution concentration. Am. J. Physiol. 261, R247-R256 (1991)
[2] De Mey, G.; De Smet, S.; Driscart, M.: Forced convection cooling of flat electronic substrates. Boundary element technology VI, 39-50 (1991)
[3] Smith, W. R.: Entry and exit conditions for flow reactors. IMA J. Appl. math. 41, 1-20 (1988) · Zbl 0668.76124
[4] Pearson, J. R. A.: A note on the danckwert’s boundary conditions for continuous flow reactors. Chem. eng. Sci. 10, 281-284 (1959)
[5] Adomian, G.: A new approach to the heat equation--an application of the decomposition method. J. math. Anal. appl. 113, 202-209 (1986) · Zbl 0606.35037
[6] Adomian, G.: Application of decomposition to convection-diffusion equations. Appl. math. Lett. 1, No. 1, 7-9 (1988) · Zbl 0631.65119
[7] Nelson, P.: Adomian’s method of decomposition: critical review and examples of failure. J. comput. Appl. math. 23, 389-393 (1988) · Zbl 0645.65084
[8] Lesnic, D.; Elliott, L.: The decomposition approach to inverse heat conduction. J. math. Anal. appl. 232, 82-98 (1999) · Zbl 0922.35189
[9] D. Lesnic and G.C. Wake, A mollified decomposition method for the solution of the Cauchy problem for the convection-diffusion equation, Inverse Probl. Eng., (submitted). · Zbl 1112.76076
[10] Ginsberg, F.: On the Cauchy problem for the one-dimensional heat equation. Math. comput. 17, 257-269 (1963) · Zbl 0112.35201
[11] Smith, W. R.; Wake, G. C.: Mathematical analysis: an inverse problem arising in convective-diffusive flow. IMA J. Appl. math. 45, 225-231 (1990) · Zbl 0726.76090
[12] Losch, J. E.: Tables of higher functions. (1960)
[13] Burggraf, R. O.: An exact solution of the inverse problem in heat conduction theory and applications. ASME J. Heat transfer 86, 373-382 (1964)
[14] Langford, D.: New analytic solutions of the one-dimensional heat equation for temperature and heat flow both prescribed at the same fixed boundary (with applications to the phase change problem). Quart. appl. Math. 24, 315-322 (1966) · Zbl 0144.14302
[15] Adomian, G.: Modification of the decomposition approach to the heat equation. J. math. Anal. appl. 124, 290-291 (1987) · Zbl 0693.35068
[16] Adomian, G.; Rach, R.: The noisy convergence phenomena in decomposition method solutions. J. comput. Appl. math. 15, 379-381 (1986) · Zbl 0616.65084
[17] Adomian, G.: Solving frontier problems modelled by nonlinear partial differential equations. Comput. math. Appl. 22, 91-94 (1994) · Zbl 0767.35016
[18] Yee, E.: Application of the decomposition method to the solution of the reaction-convection-diffusion equation. Appl. math. Comput. 56, 1-27 (1993) · Zbl 0773.76055