×

zbMATH — the first resource for mathematics

Yang-Baxter algebra and generation of quantum integrable models. (English. Russian original) Zbl 1138.81029
Theor. Math. Phys. 151, No. 3, 831-842 (2007); translation from Teor. Mat. Fiz. 151, No. 3, 470-485 (2007).
Summary: We discover an operator-deformed quantum algebra using the quantum Yang-Baxter equation with the trigonometric R-matrix. This novel Hopf algebra together with its \(q\rightarrow 1\) limit seems the most general Yang-Baxter algebra underlying quantum integrable systems. We identify three different directions for applying this algebra in integrable systems depending on different sets of values of the deforming operators. Fixed values on the whole lattice yield subalgebras linked to standard quantum integrable models, and the associated Lax operators generate and classify them in a unified way. Variable values yield a new series of quantum integrable inhomogeneous models. Fixed but different values at different lattice sites can produce a novel class of integrable hybrid models including integrable matter-radiation models and quantum field models with defects, in particular, a new quantum integrable sine-Gordon model with defect.

MSC:
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
81R15 Operator algebra methods applied to problems in quantum theory
81R12 Groups and algebras in quantum theory and relations with integrable systems
17B37 Quantum groups (quantized enveloping algebras) and related deformations
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] P. P. Kulish and E. K. Sklyanin, ”Quantum spectral transform method: Recent developments,” in: Integrable Quantum Field Theories (Lect. Notes Phys., Vol. 151, J. Hietarinta and C. Montonen, eds.), Springer, Berlin (1982), p. 61. · Zbl 0734.35071
[2] N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, Leningrad Math. J., 1, 193 (1990).
[3] L. D. Faddeev, Internat. J. Mod. Phys. A, 10, 1845 (1995). · Zbl 1044.82535 · doi:10.1142/S0217751X95000905
[4] A. Kundu and B. Basu Mallick, Modern Phys. Lett. A, 7, 61 (1992); A. Kundu, Phys. Rev. Lett., 82, 3936 (1999); ”Unifying approaches in integrable systems: Quantum and statistical, ultralocal and non-ultralocal,” in: Classical and Quantum Integrable Systems: Theory and Applications (A. Kundu, ed.), IOP, Bristol (2003), p. 147. · Zbl 1020.82559 · doi:10.1142/S0217732392003438
[5] A. G. Izergin and V. E. Korepin, Nucl. Phys. B, 205, 401 (1982). · doi:10.1016/0550-3213(82)90365-0
[6] V. K. Dobrev, J. Math. Phys., 33, 3419 (1992). · Zbl 0768.17006 · doi:10.1063/1.529890
[7] A. Kundu, SIGMA, 3, 040 (2007).
[8] A. Kundu and B. Basu Mallick, J. Math. Phys., 34, 1052 (1993). · Zbl 0774.58017 · doi:10.1063/1.530237
[9] A. G. Shnirman, B. A. Malomed, and E. Ben-Jacob, Phys. Rev. A, 50, 3453 (1994). · doi:10.1103/PhysRevA.50.3453
[10] L. D. Faddeev and O. Tirkkonen, Nucl. Phys. B, 453, 647 (1995). · Zbl 1003.82505 · doi:10.1016/0550-3213(95)00354-U
[11] A. Kundu, Phys. Lett. A, 190, 79 (1994). · Zbl 0961.82501 · doi:10.1016/0375-9601(94)90369-7
[12] R. Inoue and K. Hikami, J. Phys. Soc. Japan, 67, 87 (1998). · Zbl 0947.37043 · doi:10.1143/JPSJ.67.87
[13] A. Kundu and O. Ragnisco, J. Phys. A, 27, 6335 (1994). · Zbl 0849.35131 · doi:10.1088/0305-4470/27/19/008
[14] V. O. Tarasov, Theor. Math. Phys., 63, 440 (1985); A. G. Izergin and V. E. Korepin, Lett. Math. Phys., 8, 259 (1984). · doi:10.1007/BF01017900
[15] A. Kundu, Phys. Lett. B, 633, 657 (2006). · Zbl 1247.81181 · doi:10.1016/j.physletb.2005.12.027
[16] A. Kundu, J. Phys. A, 37, L281 (2004). · Zbl 1055.81090 · doi:10.1088/0305-4470/37/25/L03
[17] E. Corrigan and C. Zambon, J. Phys. A, 37, L471 (2004); arXiv:hep-th/0407199v1 (2004); P. Bowcock, E. Corrigan, and C. Zambon, JHEP, 0508, 023 (2005); arXiv:hep-th/0506169v2 (2005). · Zbl 1055.81515 · doi:10.1088/0305-4470/37/37/L03
[18] I. Khabibullin and A. Kundu, ”Quantum and classical integrable sine-Gordon model with defect,” (to appear).
[19] B. Buck and C. V. Sukumar, Phys. Lett. A, 81, 132 (1981). · doi:10.1016/0375-9601(81)90042-6
[20] E. T. Jaynes and F. W. Cummings, Proc. IEEE, 51, 89 (1963). · doi:10.1109/PROC.1963.1664
[21] M. Chaichian, D. Ellinas, and P. Kulish, Phys. Rev. Lett., 65, 980 (1990). · Zbl 1050.81561 · doi:10.1103/PhysRevLett.65.980
[22] I. T. Khabibullin, Theor. Math. Phys., 114, 90 (1998). · Zbl 0946.35089 · doi:10.1007/BF02557111
[23] E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, Theor. Math. Phys., 40, 688 (1979). · Zbl 1138.37331 · doi:10.1007/BF01018718
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.