zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A two-term PRP-based descent method. (English) Zbl 1138.90028
Summary: In this paper, by the use of the project of the PRP (Polak-Ribiére-Polyak) conjugate gradient direction, we develop a PRP-based descent method for solving unconstrained optimization problems. The method provides a sufficient descent direction for the objective function. Moreover, if exact line search is used, the method reduces to the standard PRP method. Under suitable conditions, we show that the method with some backtracking line search or the generalized Wolfe-type line search is globally convergent. We also report some numerical results and compare the performance of the method with some existing conjugate gradient methods. The results show that the proposed method is efficient.

90C30Nonlinear programming
65K05Mathematical programming (numerical methods)
Full Text: DOI