zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Isolation and handling of actuator faults in nonlinear systems. (English) Zbl 1138.93330
Summary: This work considers the problem of control actuator fault detection and isolation and fault-tolerant control for a multi-input multi-output nonlinear system subject to constraints on the manipulated inputs and proposes a fault detection and isolation filter and controller reconfiguration design. The implementation of the fault detection and isolation filters and reconfiguration strategy are demonstrated via a chemical process example.

MSC:
93B35Sensitivity (robustness) of control systems
93C41Control problems with incomplete information
93C95Applications of control theory
34K35Functional-differential equations connected with control problems
93C10Nonlinear control systems
93B52Feedback control
94C12Fault detection; testing (circuits)
WorldCat.org
Full Text: DOI
References:
[1] Allgöwer, F., & Doyle, F. J. (1997). Nonlinear process control--which way to the promised land?. In Proceedings of 5th international conference on chemical process control (pp. 24-45). Tahoe City, CA.
[2] Aradhye, H. B.; Bakshi, B. R.; Davis, J. F.; Ahalt, S. C.: Clustering in wavelet domain: A multiresolution art network for anomaly detection, Aiche journal 50, 2455-2466 (2004)
[3] Bao, J.; Zhang, W. Z.; Lee, P. L.: Decentralized fault-tolerant control system design for unstable processes, Chemical engineering science 58, 5045-5054 (2003)
[4] Bequette, W. B.: Nonlinear control of chemical processes: A review, Industrial & engineering chemistry research 30, 1391-1413 (1991)
[5] Bonivento, C.; Isidori, A.; Marconi, L.; Paoli, A.: Implicit fault-tolerant control: application to induction motors, Automatica 40, 355-371 (2004) · Zbl 1043.93021 · doi:10.1016/j.automatica.2003.10.003
[6] Christofides, P. D.; El-Farra, N. H.: Control of nonlinear and hybrid process systems: designs for uncertainty, constraints and time-delays, (2005) · Zbl 1106.93002
[7] Davis, J. F.; Piovoso, M. L.; Kosanovich, K.; Bakshi, B.: Process data analysis and interpretation, Advances in chemical engineering 25, 1-103 (1999)
[8] Decarlo, R. A.; Branicky, M. S.; Pettersson, S.; Lennartson, B.: Perspectives and results on the stability and stabilizability of hybrid systems, Proceedings of the IEEE 88, 1069-1082 (2000)
[9] Depersis, C.; Isidori, A.: A geometric approach to nonlinear fault detection and isolation, IEEE transactions on automatic control 46, 853-865 (2001) · Zbl 1009.93003 · doi:10.1109/9.928586
[10] El-Farra, N. H.; Christofides, P. D.: Integrating robustness, optimality and constraints in control of nonlinear processes, Chemical engineering science 56, 1841-1868 (2001)
[11] El-Farra, N. H.; Christofides, P. D.: Bounded robust control of constrained multivariable nonlinear processes, Chemical engineering science 58, 3025-3047 (2001)
[12] El-Farra, N. H.; Christofides, P. D.: Coordinated feedback and switching for control of hybrid nonlinear processes, Aiche journal 49, 2079-2098 (2003)
[13] El-Farra, N. H.; Gani, A.; Christofides, P. D.: Fault-tolerant control of process systems using communication networks, Aiche journal 51, 1665-1682 (2005)
[14] El-Farra, N. H.; Mhaskar, P.; Christofides, P. D.: Output feedback control of switched nonlinear systems using multiple Lyapunov functions, Systems & control letters 54, 1163-1182 (2005) · Zbl 1129.93497 · doi:10.1016/j.sysconle.2005.04.005
[15] Frank, P. M.: Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy--a survey and some new results, Automatica 26, 459-474 (1990) · Zbl 0713.93052 · doi:10.1016/0005-1098(90)90018-D
[16] Frank, P. M.; Ding, X.: Survey of robust residual generation and evaluation methods in observer-based fault detection systems, Journal of process control 7, 403-424 (1997)
[17] Garcia-Onorio, V.; Ydstie, B. E.: Distributed, asynchronous and hybrid simulation of process networks using recording controllers, International journal of robotics & nonlinear control 14, 227-248 (2004) · Zbl 1033.93003 · doi:10.1002/rnc.871
[18] Henson, M. A.; Seborg, D. E.: Nonlinear process control, (1997) · Zbl 0875.93345
[19] Kazantzis, N.; Kravaris, C.: Nonlinear observer design using Lyapunov’s auxiliary theorem, Systems & control letters 34, 241-247 (1999) · Zbl 0909.93002 · doi:10.1016/S0167-6911(98)00017-6
[20] Khalil, H. K.; Esfandiari, F.: Semiglobal stabilization of a class of nonlinear systems using output feedback, IEEE transactions on automatic control 38, 1412-1415 (1993) · Zbl 0787.93079 · doi:10.1109/9.237658
[21] Kresta, J. V.; Macgregor, J. F.; Marlin, T. E.: Multivariate statistical monitoring of process operating performance, Canadian journal of chemical engineering 69, 35-47 (1991)
[22] Lin, Y.; Sontag, E. D.: A universal formula for stabilization with bounded controls, Systems & control letters 16, 393-397 (1991) · Zbl 0728.93062 · doi:10.1016/0167-6911(91)90111-Q
[23] Massoumnia, M.; Verghese, G. C.; Wilsky, A. S.: Failure detection and identification, IEEE transactions on automatic control 34, 316-321 (1989) · Zbl 0682.93061 · doi:10.1109/9.16422
[24] Mehranbod, N.; Soroush, M.; Panjapornpon, C.: A method of sensor fault detection and identification, Journal of process control 15, 321-339 (2005)
[25] Mhaskar, P.; El-Farra, N. H.; Christofides, P. D.: Hybrid predictive control of process systems, Aiche journal 50, 1242-1259 (2004) · Zbl 1043.93022
[26] Mhaskar, P.; Gani, A.; Christofides, P. D.: Fault-tolerant control of nonlinear processes: performance-based reconfiguration and robustness, International journal of robotics & nonlinear control 16, 91-111 (2006) · Zbl 1085.93508 · doi:10.1002/rnc.1045
[27] Mhaskar, P.; Gani, A.; El-Farra, N. H.; Mcfall, C.; Christofides, P. D.; Davis, J. F.: Integrated fault-detection and fault-tolerant control for process systems, Aiche journal 52, 2129-2148 (2006)
[28] Negiz, A.; Cinar, A.: Statistical monitoring of multivariable dynamic processes with state-space models, Aiche journal 43, 2002-2020 (1997)
[29] Nomikos, P.; Macgregor, J. F.: Monitoring batch processes using multiway principal component analysis, Aiche journal 40, 1361-1375 (1994)
[30] Patton, R. J. (1997). Fault-tolerant control systems: The 1997 situation. In Proceedings of the IFAC symposium SAFEPROCESS 1997 (pp. 1033-1054). Hull, UK.
[31] Pisu, P., Serrani, A., You, S., & Jalics, L. (2006). Adaptive threshold based diagnostics for steer-by-wire systems. Journal of Dynamic Systems Measurement Control--Transactions of the ASME.
[32] Rollins, D. R.; Davis, J. F.: An unbiased estimation technique when Gross errors exist in process measurements, Aiche journal 38, 563-572 (1992)
[33] Saberi, A.; Stoorvogel, A. A.; Sannuti, P.; Niemann, H.: Fundamental problems in fault detection and identification, International journal of robotics & nonlinear control 10, 1209-1236 (2000) · Zbl 0967.93037
[34] Soroush, M.; Valluri, S.; Mehranbod, N.: Nonlinear control of input-constrained systems, Computers & chemical engineering 30, 158-181 (2005)
[35] Wu, N. E.: Coverage in fault-tolerant control, Automatica 40, 537-548 (2004) · Zbl 1168.93350 · doi:10.1016/j.automatica.2003.11.015
[36] Yang, G. H.; Wang, J. L.; Soh, Y. C.: Reliable H$\infty $control design for linear systems, Automatica 37, 717-725 (2001) · Zbl 0990.93029
[37] Zhou, D. H.; Frank, P. M.: Fault diagnostics and fault tolerant control, IEEE transactions on aerospace and electronic systems 34, 420-427 (1998)