×

A synthesis approach for output feedback robust constrained model predictive control. (English) Zbl 1138.93340

Summary: This paper addresses the synthesis approach for output feedback robust model predictive control for systems with polytopic description, bounded state disturbance and measurement noise. Off-line, it calculates a sequence of output feedback laws based on the state estimators, by solving linear matrix inequality optimization problems. On-line, at each sampling time, it chooses an appropriate output feedback law from this sequence. The primary contribution is to present a rigorous method to guarantee satisfaction of input/state constraints. A numerical example is given to illustrate the effectiveness of the controller.

MSC:

93B50 Synthesis problems
93B35 Sensitivity (robustness)

Software:

Matlab; LMI toolbox
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alessandri, A.; Baglietto, M.; Battistelli, G., Receding-horizon estimation for switching discrete-time linear systems, IEEE Transactions on Automatic Control, 50, 1736-1748 (2005) · Zbl 1365.93479
[2] Gahinet, P.; Nemirovski, A.; Laub, A. J.; Chilali, M., LMI control toolbox for use with matlab, User’s guide (1995), The Math Works Inc: The Math Works Inc Natick, MA, USA
[3] Kolmanovsky, I.; Gilbert, E. G., Theory and computation of disturbance invariance sets for discrete-time linear systems, Mathematical Problems in Engineering: Theory, Methods and Application, 4, 317-367 (1998) · Zbl 0923.93005
[4] Kothare, M. V.; Balakrishnan, V.; Morari, M., Robust constrained model predictive control using linear matrix inequalities, Automatica, 32, 1361-1379 (1996) · Zbl 0897.93023
[5] Lee, Y. I.; Kouvaritakis, B., Receding horizon output feedback control for linear systems with input saturation, IEE Proceedings on Control Theory and Application, 148, 109-115 (2001)
[6] Mayne, D. Q.; Rakovic, S. V.; Findeisen, R.; Allgower, F., Robust output feedback model predictive control of constrained linear systems, Automatica, 42, 1217-1222 (2006) · Zbl 1116.93032
[7] Rakovic, S. V.; Kerrigan, E. C.; Kouramas, K. I.; Mayne, D. Q., Invariant approximations of the minimal robust positively invariant set, IEEE Transactions on Automatic Control, 50, 406-410 (2005) · Zbl 1365.93122
[8] Wan, Z.; Kothare, M. V., Robust output feedback model predictive control using off-line linear matrix inequalities, Journal of Process Control, 12, 763-774 (2002)
[9] Wan, Z.; Kothare, M. V., An efficient off-line formulation of robust model predictive control using linear matrix inequalities, Automatica, 39, 837-846 (2003) · Zbl 1032.93020
[10] Wan, Z.; Kothare, M. V., Efficient scheduled stabilizing output feedback model predictive control for constrained nonlinear systems, IEEE Transactions on Automatic Control, 49, 1172-1177 (2004) · Zbl 1365.93272
[11] Wang, Y. J.; Rawlings, J. B., A new robust model predictive control method i: Theory and computation, Journal of Process Control, 14, 231-247 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.