zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A synthesis approach for output feedback robust constrained model predictive control. (English) Zbl 1138.93340
Summary: This paper addresses the synthesis approach for output feedback robust model predictive control for systems with polytopic description, bounded state disturbance and measurement noise. Off-line, it calculates a sequence of output feedback laws based on the state estimators, by solving linear matrix inequality optimization problems. On-line, at each sampling time, it chooses an appropriate output feedback law from this sequence. The primary contribution is to present a rigorous method to guarantee satisfaction of input/state constraints. A numerical example is given to illustrate the effectiveness of the controller.

93B50Synthesis problems
93B35Sensitivity (robustness) of control systems
Full Text: DOI
[1] Alessandri, A.; Baglietto, M.; Battistelli, G.: Receding-horizon estimation for switching discrete-time linear systems, IEEE transactions on automatic control 50, 1736-1748 (2005) · Zbl 1129.93528
[2] Gahinet, P.; Nemirovski, A.; Laub, A. J.; Chilali, M.: LMI control toolbox for use with Matlab, user’s guide, (1995)
[3] Kolmanovsky, I.; Gilbert, E. G.: Theory and computation of disturbance invariance sets for discrete-time linear systems, Mathematical problems in engineering: theory, methods and application 4, 317-367 (1998) · Zbl 0923.93005 · doi:10.1155/S1024123X98000866
[4] Kothare, M. V.; Balakrishnan, V.; Morari, M.: Robust constrained model predictive control using linear matrix inequalities, Automatica 32, 1361-1379 (1996) · Zbl 0897.93023 · doi:10.1016/0005-1098(96)00063-5
[5] Lee, Y. I.; Kouvaritakis, B.: Receding horizon output feedback control for linear systems with input saturation, IEE Proceedings on control theory and application 148, 109-115 (2001)
[6] Mayne, D. Q.; Rakovic, S. V.; Findeisen, R.; Allgower, F.: Robust output feedback model predictive control of constrained linear systems, Automatica 42, 1217-1222 (2006) · Zbl 1116.93032 · doi:10.1016/j.automatica.2006.03.005
[7] Rakovic, S. V.; Kerrigan, E. C.; Kouramas, K. I.; Mayne, D. Q.: Invariant approximations of the minimal robust positively invariant set, IEEE transactions on automatic control 50, 406-410 (2005)
[8] Wan, Z.; Kothare, M. V.: Robust output feedback model predictive control using off-line linear matrix inequalities, Journal of process control 12, 763-774 (2002)
[9] Wan, Z.; Kothare, M. V.: An efficient off-line formulation of robust model predictive control using linear matrix inequalities, Automatica 39, 837-846 (2003) · Zbl 1032.93020 · doi:10.1016/S0005-1098(02)00174-7
[10] Wan, Z.; Kothare, M. V.: Efficient scheduled stabilizing output feedback model predictive control for constrained nonlinear systems, IEEE transactions on automatic control 49, 1172-1177 (2004)
[11] Wang, Y. J.; Rawlings, J. B.: A new robust model predictive control method i: Theory and computation, Journal of process control 14, 231-247 (2004)