zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new delay system approach to network-based control. (English) Zbl 1138.93375
Summary: This paper presents a new delay system approach to network-based control. This approach is based on a new time-delay model proposed recently, which contains multiple successive delay components in the state. Firstly, new results on stability and $\cal H _{\infty}$ performance are proposed for systems with two successive delay components, by exploiting a new Lyapunov-Krasovskii functional and by making use of novel techniques for time-delay systems. An illustrative example is provided to show the advantage of these results. The second part of this paper utilizes the new model to investigate the problem of network-based control, which has emerged as a topic of significant interest in the control community. A sampled-data networked control system with simultaneous consideration of network induced delays, data packet dropouts and measurement quantization is modeled as a nonlinear time-delay system with two successive delay components in the state and, the problem of network-based $\cal H _{\infty}$ control is solved accordingly. Illustrative examples are provided to show the advantage and applicability of the developed results for network-based controller design.

MSC:
93C57Sampled-data control systems
93B35Sensitivity (robustness) of control systems
93D20Asymptotic stability of control systems
93C05Linear control systems
WorldCat.org
Full Text: DOI
References:
[1] Antsaklis, P.; Baillieul, J.: Guest editorial special issue on networked control systems, IEEE transactions on automatic control 31, No. 9, 1421-1423 (2004)
[2] Biernacki, R. M.; Hwang, H.; Battacharyya, S. P.: Robust stability with structured real parameter perturbations, IEEE transactions on automatic control 32, 495-506 (1987)
[3] El Ghaoui, L.; Oustry, F.; Rami, M. A.: A cone complementarity linearization algorithm for static output-feedback and related problems, IEEE transactions on automatic control 42, No. 8, 1171-1176 (1997) · Zbl 0887.93017 · doi:10.1109/9.618250
[4] Elia, N.; Mitter, S. K.: Stabilization of linear systems with limited information, IEEE transactions on automatic control 46, No. 9, 1384-1400 (2001) · Zbl 1059.93521 · doi:10.1109/9.948466 · http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=948466
[5] Fridman, E.; Shaked, U.: Delay-dependent stability and H$\infty $control: constant and time-varying delays, International journal of control 76, No. 1, 48-60 (2003) · Zbl 1023.93032 · doi:10.1080/0020717021000049151
[6] Fu, M.; Xie, L.: The sector bound approach to quantized feedback control, IEEE transactions on automatic control 50, No. 11, 1698-1711 (2005)
[7] Gao, H.; Lam, J.; Wang, C.; Xu, S.: H$\infty $model reduction for discrete time-delay systems: delay independent and dependent approaches, International journal of control 77, 321-335 (2004) · Zbl 1066.93009 · doi:10.1080/00207170410001663525
[8] Gao, H.; Wang, C.: Comments and further results on A descriptor system approach to H$\infty $control of linear time-delay systems, IEEE transactions on automatic control 48, No. 3, 520-525 (2003)
[9] Gao, H.; Wang, C.: A delay-dependent approach to robust H$\infty $filtering for uncertain discrete-time state-delayed systems, IEEE transactions of signal processing 52, No. 6, 1631-1640 (2004)
[10] Goodwin, G. C.; Haimovich, H.; Quevedo, D. E.; Welsh, J. S.: A moving horizon approach to networked control system design, IEEE transactions on automatic control 49, No. 9, 1427-1445 (2004)
[11] Gu, K.; Kharitonov, V. L.; Chen, J.: Stability of time-delay systems, (2003) · Zbl 1039.34067
[12] Hale, J.; Lunel, S. M. V.: Introduction to functional differential equations, (1993) · Zbl 0787.34002
[13] He, Y.; Wang, Q. -G.; Lin, C.; Wu, M.: Delay-range-dependent stability for systems with time-varying delay, Automatica 43, No. 2, 371-376 (2007) · Zbl 1111.93073 · doi:10.1016/j.automatica.2006.08.015
[14] He, Y.; Wang, Q. G.; Xie, L. H.; Lin, C.: Further improvement of free-weighting matrices technique for systems with time-varying delay, IEEE transactions on automatic control 52, No. 2, 293-299 (2007)
[15] He, Y.; Wu, M.; She, J. H.; Liu, G. P.: Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties, IEEE transactions on automatic control 49, No. 5, 828-832 (2004)
[16] Hua, C.; Guan, X.; Shi, P.: Robust backstepping control for a class of time delayed systems, IEEE transactions on automatic control 50, No. 6, 894-899 (2005)
[17] Ishii, H., & Francis, B. A. (2002). Limited data rate in control systems with networks (vol. 275), Lecture Notes in Control and Information Sciences. Berlin: Springer. · Zbl 1001.93001
[18] Jing, X. J.; Tan, D. L.; Wang, Y. C.: An LMI approach to stability of systems with severe time-delay, IEEE transactions on automatic control 49, No. 7, 1192-1195 (2004)
[19] Kim, J. -H.: Delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty, IEEE transactions on automatic control 46, No. 5, 789-792 (2001) · Zbl 1008.93056
[20] Lam, J.; Gao, H.; Wang, C.: Stability analysis for continuous systems with two additive time-varying delay components, Systems control letters 56, No. 1, 16-24 (2007) · Zbl 1120.93362
[21] Lee, Y. S., Moon, Y. S., Kwon, W. H., & Lee, K. H. (2001). Delay-dependent robust H\infty control for uncertain systems with time-varying state-delay. In Proceedings of the 40th conference on decision control (pp. 3208-3213), Orlando, FL.
[22] Lian, F. -L.; Moyne, J.; Tilbury, D.: Modelling and optimal controller design of networked control systems with multiple delays, International journal of control 76, No. 6, 591-606 (2003) · Zbl 1050.93038 · doi:10.1080/0020717031000098426
[23] Lin, C.; Wang, Q. -G.; Lee, T. H.: A less conservative robust stability test for linear uncertain time-delay systems, IEEE transactions on automatic control 51, No. 1, 87-91 (2006)
[24] Liu, H.; Sun, F.; He, K.; Sun, Z.: Design of reduced-order H$\infty $filter for Markovian jumping systems with time delay, IEEE transactions on circuits and systems (II) 51, 607-612 (2004)
[25] Montestruque, L. A.; Antsaklis, P.: Stability of model-based networked control systems with time-varying transmission times, IEEE transaction on automatic control 49, No. 9, 1562-1572 (2004)
[26] Niculescu, S. I.: Delay effects on stability: a robust control approach, (2001) · Zbl 0997.93001
[27] Richard, J. P.: Time-delay systems: an overview of some recent advances and open problems, Automatica 39, No. 10, 1667-1694 (2003) · Zbl 1145.93302 · doi:10.1016/S0005-1098(03)00167-5
[28] Seiler, P.; Sengupta, R.: An H$\infty $approach to networked control, IEEE transactions on automatic control 50, No. 3, 356-364 (2005)
[29] Walsh, G. C.; Ye, H.; Bushnell, L.: Stability analysis of networked control systems, IEEE transactions on control systems technology 10, No. 3, 438-446 (2002)
[30] Wang, Z.; Burnham, K. J.: Robust filtering for a class of stochastic uncertain nonlinear time-delay systems via exponential state estimation, IEEE transactions on signal processing 49, No. 4, 794-804 (2001)
[31] Wang, Z.; Huang, B.; Unbehauen, H.: Robust H$\infty $observer design of linear state delayed systems with parametric uncertainty: the discrete-time case, Automatica 35, 1161-1167 (1999) · Zbl 1041.93514 · doi:10.1016/S0005-1098(99)00008-4
[32] Wu, M.; He, Y.; She, J. H.; Liu, G. P.: Delay-dependent criteria for robust stability of time-varying delay systems, Automatica 40, 1435-1439 (2004) · Zbl 1059.93108 · doi:10.1016/j.automatica.2004.03.004
[33] Xia, Y.; Jia, Y.: Robust stability functionals of state delayed systems with polytopic type uncertainties via parameter-dependent Lyapunov functions, International journal of control 75, 1427-1434 (2002) · Zbl 1078.93054 · doi:10.1080/0020717021000023834
[34] Xu, S.; Lam, J.; Huang, S.; Yang, C.: H$\infty $model reduction for linear time-delay systems: continuous-time case, International journal of control 74, No. 11, 1062-1074 (2001) · Zbl 1022.93008 · doi:10.1080/00207170110052194
[35] Yang, F. W.; Wang, Z. D.; Hung, Y. S.; Gani, M.: H$\infty $control for networked systems with random communication delays, IEEE transactions on automatic control 51, No. 3, 511-518 (2006)
[36] Yu, M.; Wang, L.; Chu, T.: Sampled-data stabilization of networked control systems with nonlinearity, IEE Proceedings part D: Control theory and applications 152, No. 6, 609-614 (2005)
[37] Yu, M.; Wang, L.; Chu, T.; Hao, F.: Stabilization of networked control systems with data packet dropout and transmission delays: continuous-time case, European journal of control 11, No. 1, 40-55 (2005) · Zbl 1293.93622
[38] Yue, D.; Han, Q. -L.; Lam, J.: Network-based robust H$\infty $control of systems with uncertainty, Automatica 41, No. 6, 999-1007 (2005) · Zbl 1091.93007 · doi:10.1016/j.automatica.2004.12.011
[39] Yue, D.; Han, Q. -L.; Peng, C.: State feedback controller design of networked control systems, IEEE transactions on circuits and systems (II) 51, No. 11, 640-644 (2004)
[40] Zhang, L.; Shi, Y.; Chen, T.; Huang, B.: A new method for stabilization of networked control systems with random delays, IEEE transactions on automatic control 50, No. 8, 1177-1181 (2005)
[41] Zhang, W.; Branicky, M.; Phillips, S.: Stability of networked control systems, IEEE control systems magazine 21, 84-99 (2001)
[42] Zhang, X. -M.; Wu, M.; She, J. -H.; He, Y.: Delay-dependent stabilization of linear systems with time-varying state and input delays, Automatica 41, No. 8, 1405-1412 (2005) · Zbl 1093.93024 · doi:10.1016/j.automatica.2005.03.009
[43] Zhivoglyadov, P. V.; Middleton, R. H.: Networked control design for linear systems, Automatica 39, No. 4, 743-750 (2003) · Zbl 1022.93018 · doi:10.1016/S0005-1098(02)00306-0