Graef, John R.; Kong, Lingju Necessary and sufficient conditions for the existence of symmetric positive solutions of multi-point boundary value problems. (English) Zbl 1139.34017 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68, No. 6, 1529-1552 (2008). The authors are concerned with necessary and sufficient conditions for the existence of symmetric positive solutions of the fourth-order \(p\)-Laplacian differential equation \[ (| u''| ^{p-1}u'')''=f(t,u,u',u''),\;\;t\in(0,1) \]with the boundary condition \[ u^{(2i)}(0)=u^{(2i)}(1)=\sum_{j=1}^{m}a_{ij}u^{(2i)}(t_j),\;\;i=0,1. \]The proofs of the main results are based upon a fixed point theorem in cone, see [D. Guo and V. Lakshmikantham, Nonlinear problems in Abstract Cones, Notes and Reports in Mathematics in Science and Engineering, 5. Boston, MA: Academic Press (1988; Zbl 0661.47045)]. For related work see [R. I. Avery, J. Henderson, Appl. Math. Lett. 13, No. 3, 1–7 (2000; Zbl 0961.34014)]. Reviewer: Ruyun Ma (Lanzhou) Cited in 15 Documents MSC: 34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations 34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations Keywords:boundary value problems; existence; cone; multi-point boundary conditions; fixed point theorem Citations:Zbl 0661.47045; Zbl 0961.34014 PDF BibTeX XML Cite \textit{J. R. Graef} and \textit{L. Kong}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68, No. 6, 1529--1552 (2008; Zbl 1139.34017) Full Text: DOI References: [1] Avery, R. I.; Henderson, J., Three symmetric positive solutions for a second-order boundary value problem, Appl. Math. Lett., 13, 1-7 (2000) · Zbl 0961.34014 [2] Davis, J. M.; Eloe, P. W.; Henderson, J., Triple positive solutions and dependence on higher order derivatives, J. Math. Anal. Appl., 237, 710-720 (1999) · Zbl 0935.34020 [3] Davis, J. M.; Erbe, L. H.; Henderson, J., Multiplicity of positive solutions for higher order Sturm-Liouville problems, Rocky Mountain J. Math., 31, 169-184 (2001) · Zbl 0989.34012 [6] Graef, J. R.; Kong, L.; Kong, Q., Symmetric positive solutions of nonlinear boundary value problems, J. Math. Anal. Appl., 326, 1310-1327 (2007) · Zbl 1117.34024 [7] Graef, J. R.; Qian, C.; Yang, B., Multiple symmetric positive solutions of a class of boundary value problems for higher order ordinary differential equations, Proc. Amer. Math. Soc., 131, 577-585 (2003) · Zbl 1046.34037 [8] Guo, D.; Lakshmikantham, V., Nonlinear Problems in Abstract Cones (1988), Academic Press: Academic Press Orlando · Zbl 0661.47045 [9] Henderson, J.; Thompson, H. B., Multiple symmetric positive solutions for a second order boundary value problem, Proc. Amer. Math. Soc., 128, 2373-2379 (2000) · Zbl 0949.34016 [10] Kong, L.; Kong, Q., Positive solutions of nonlinear \(m\)-point boundary value problems on a measure chain, J. Difference Equ. Appl., 9, 615-627 (2003) [11] Ma, R.; Tisdell, C., Positive solutions of singular sublinear fourth-order boundary value problems, Appl. Anal., 84, 1199-1220 (2005) · Zbl 1085.34020 [12] Shi, G.; Chen, S., Positive solutions of fourth-order superlinear singular boundary value problems, Bull. Austral. Math. Soc., 66, 95-104 (2002) · Zbl 1032.34022 [13] Shi, G.; Chen, S., Positive solutions of even higher-order singular superlinear boundary value problems, Comput. Math. Appl., 45, 593-603 (2003) · Zbl 1054.34039 [14] Wei, Z., Existence of positive solutions for \(2 n\) th-order singular sublinear boundary value problems, J. Math. Anal. Appl., 306, 619-636 (2005) · Zbl 1078.34010 [15] Wei, Z., A necessary and sufficient condition for \(2 n\) th-order singular super-linear \(m\)-point boundary value problems, J. Math. Anal. Appl., 327, 930-947 (2007) · Zbl 1117.34014 [16] Wei, Z.; Zhang, Z., A necessary and sufficient condition for the existence of positive solutions of singular superlinear boundary value problems, Acta Math. Sinica, 48, 25-34 (2005) · Zbl 1124.34316 [17] Xu, Y.; Li, L.; Debnath, L., A necessary and sufficient condition for the existence of positive solutions of singular boundary value problems, Appl. Math. Lett., 18, 881-889 (2005) · Zbl 1095.34013 [18] Yan, B.; O’Regan, D.; Agarwal, R. P., Unbounded solutions for singular boundary value problems on the semi-infinite interval: Upper and lower solutions and multiplicity, J. Comput. Appl. Math., 197, 365-386 (2006) · Zbl 1116.34016 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.