zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Explicit and exact travelling wave solutions for the generalized derivative Schrödinger equation. (English) Zbl 1139.35092
Summary: A new auxiliary equation expansion method and its algorithm is proposed for studying a first order nonlinear ordinary differential equation with a sixth-degree nonlinear term. Being concise and straightforward, the method is applied to the generalized derivative Schrödinger equation. As a result, some new exact travelling wave solutions are obtained which include bright and dark solitary wave solutions, triangular periodic wave solutions and singular solutions. This algorithm can also be applied to other nonlinear wave equations in mathematical physics.

35Q55NLS-like (nonlinear Schrödinger) equations
35Q51Soliton-like equations
35A20Analytic methods, singularities (PDE)
Full Text: DOI
[1] Ablowitz, M. J.; Clarkson, P. A.: Solitons, nonlinear evolution equations and inverse scattering. (1991) · Zbl 0762.35001
[2] Wadati, M.: J phys soc jpn. 38, 673 (1975)
[3] Wadati, M.: J phys soc jpn. 38, 681 (1975)
[4] Konno, K.; Wadati, M.: Prog theore phys. 53, 1652 (1975)
[5] Matveev, V. B.; Salle, M. A.: Darboux transformation and solitons. (1991) · Zbl 0744.35045
[6] Gu, C. H.; Hu, H. S.; Zhou, Z. X.: Darboux transformations in soliton theory and its geometric applications. (1999)
[7] Rogers, C.; Schief, W. K.: Bäcklund and Darboux transformations, geometry and modern applications in soliton theory. (2002) · Zbl 1019.53002
[8] Hirota, R.: Direct methods in soliton theory. Solitons (1980)
[9] Olver, P. J.: Applications of Lie groups to differential equations. (1993) · Zbl 0785.58003
[10] Bluman, G. W.; Kumei, S.: Symmetries and differential equations. (1989) · Zbl 0698.35001
[11] Yan, C. T.: Phys lett A. 224, 77 (1996)
[12] Fan, E. G.: Phys lett A. 277, 212 (2000)
[13] Yan, Z. Y.; Zhang, H. Q.: Phys lett A. 292, 100 (2001)
[14] Fu, Z. T.: Phys lett A. 299, 507 (2002)
[15] Fan, E. G.: J phys A. 35, 6853 (2002)
[16] Conte, R.; Musette, M.: J phys A: math gen. 25, 5609 (1992)
[17] Huang, D. J.; Zhang, H. Q.: Chaos, solitons & fractals. 23, 601 (2005)
[18] Van Saarloos, W.; Hohenberg, P. C.: Phys D. 56, 303 (1992)
[19] Cariello, F.; Tabor, M.: Phys D. 39, 77 (1989)
[20] Wu, W. T.: Algorithms and computation. (1994)