zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonlinear integral equations for solving inverse boundary value problems for inclusions and cracks. (English) Zbl 1139.45003
Authors’ summary: For the problem to determine the shape of a perfectly conducting inclusion within a conducting homogeneous host medium from overdetermined Cauchy data on the accessible exterior boundary, that is, for an inverse Dirichlet boundary value problem, recently {\it R. Kress} and {\it W. Rundell} [Inverse Probl. 21, No. 4, 1207--1223 (2005; Zbl 1086.35139)] suggested a new inverse algorithm based on nonlinear integral equations arising from the reciprocity gap principle. The present paper extends this approach to the case of a perfectly insulating inclusion and the case of a perfectly conducting crack. The mathematical foundations of these extensions are provided and numerical examples illustrate the feasibility of the method.

MSC:
45G10Nonsingular nonlinear integral equations
47G10Integral operators
35J05Laplacian operator, reduced wave equation (Helmholtz equation), Poisson equation
35R30Inverse problems for PDE
WorldCat.org
Full Text: DOI
References:
[1] G. Alessandrini, Stability for the crack determination problem , in Inverse problems in mathematical physics (L. Päivärinta, et al., eds.), Springer-Verlag, Berlin, 1993, pp. 1-8. · Zbl 0802.35152
[2] G. Alessandrini, E. Beretta, E. Rosset and S. Vessella, Optimal stability for inverse elliptic boundary value problems with unknown boundaries , Ann. Scuola Norm. Sup. Pisa, Cl. Sci. IV. 29 (2000), 755-806. · Zbl 1034.35148 · numdam:ASNSP_2000_4_29_4_755_0 · eudml:84427
[3] G. Alessandrini, E. Beretta, F. Santosa and S. Vessella, Stability in crack determination from electrostatic measurements at the boundary - A numerical investigation , Inverse Problems 11 (1995), L17-L24. · Zbl 0835.35150 · doi:10.1088/0266-5611/11/5/001
[4] G. Alessandrini, E. Beretta and S. Vessella, Determining linear cracks by boundary measurements : Lipschitz stability , SIAM J. Math. Anal. 27 (1996), 361-375. · Zbl 0855.35124 · doi:10.1137/S0036141094265791
[5] G. Alessandrini and L. Rondi, Optimal stability for the inverse problem of multiple cavities , J. Differential Equations 176 (2001), 356-386. · Zbl 0988.35163 · doi:10.1006/jdeq.2000.3987
[6] S. Andrieux and A. Ben Abda, Identification of planar crack by complete overdetermined data : Inversion formulae , Inverse Problems 12 (1996), 553-563. · Zbl 0858.35131 · doi:10.1088/0266-5611/12/5/002
[7] K.E. Atkinson, The numerical solution of integral equations of the second kind , Cambridge Univ. Press, Cambridge, 1997. · Zbl 0899.65077
[8] E. Beretta and S. Vessella, Stable determination of boundaries from Cauchy data , SIAM J. Math. Anal. 30 (1999), 220-232. · Zbl 0928.35201 · doi:10.1137/S0036141097325733
[9] K. Bryan, F.R. Ogborne, III and M. Vellela, Reconstruction of cracks with unknown transmission condition from boundary data , Inverse Problems 21 (2005), 21-36. · Zbl 1086.35126 · doi:10.1088/0266-5611/21/1/003
[10] A.L. Bukhgeim, J. Cheng and M. Yamamoto, Stability for an inverse boundary problem of determining a part of a boundary , Inverse Problems 15 (1999), 1021-1032. · Zbl 0934.35202 · doi:10.1088/0266-5611/15/4/312
[11] R. Chapko and R. Kress, A hybrid method for inverse boundary value problems in potential theory , J. Inverse Ill-Posed Probl. 13 (2005), 27-40. · Zbl 1076.31003 · doi:10.1163/1569394053583711
[12] J. Cheng, Y.C. Hon and M. Yamamoto, Conditional stability for an inverse Neumann boundary problem , Appl. Anal. 83 (2004), 49-62. · Zbl 1047.35131 · doi:10.1080/00036810310001620081
[13] A. Friedman and M. Vogelius, Determining cracks by boundary measurements , Indiana Univ. Math. J. 38 (1989), 527-556. · Zbl 0697.35165 · doi:10.1512/iumj.1989.38.38025
[14] R. González and R. Kress, On the treatment of a Dirichlet-Neumann mixed boundary value problem for harmonic functions by an integral equations method , SIAM J. Math. Anal. 8 (1977), 504-517. · Zbl 0357.35025 · doi:10.1137/0508038
[15] H. Haddar and R. Kress, Conformal mappings and inverse boundary value problems , Inverse Problems 21 (2005), 935-953. · Zbl 1071.35123 · doi:10.1088/0266-5611/21/3/009
[16] R. Kress, Inverse scattering from an open arc , Math. Meth. Appl. Sci. 18 (1995), 267-294. · Zbl 0824.35030 · doi:10.1002/mma.1670180403
[17] --------, On the numerical solution of a hypersingular integral equation in scattering theory , J. Comp. Appl. Math. 61 (1995), 345-360. · Zbl 0839.65119 · doi:10.1016/0377-0427(94)00073-7
[18] --------, Linear integral equations , 2nd ed., Springer-Verlag, Heidelberg, 1999. · Zbl 0920.45001
[19] --------, Inverse Dirichlet problem and conformal mapping , Math. Comp. Simulation 66 (2004), 255-265. · Zbl 1054.65112 · doi:10.1016/j.matcom.2004.02.006
[20] R. Kress and W. Rundell, Nonlinear integral equations and iterative solution for an inverse boundary value problem , Inverse Problems 21 (2005), 1207-1223. · Zbl 1086.35139 · doi:10.1088/0266-5611/21/4/002
[21] R. Kress and P. Serranho, A hybrid method for two-dimensional crack reconstruction , Inverse Problems 21 (2005), 773-784. · Zbl 1070.35126 · doi:10.1088/0266-5611/21/2/020
[22] P.D. Lax and R.S. Phillips, Scattering theory , Academic Press, New York, 1967. · Zbl 0186.16301
[23] W. McLean, Strongly elliptic systems and boundary integral equations , Cambridge Univ. Press, Cambridge, 2000. · Zbl 0948.35001
[24] R. Potthast, Fréchet differentiability of boundary integral operators in inverse acoustic scattering , Inverse Problems 10 (1994), 431-447. · Zbl 0805.35157 · doi:10.1088/0266-5611/10/2/016
[25] Y. Yan and I.H. Sloan, On integral equations of the first kind with logarithmic kernels , J. Integral Equations Appl. 1 (1988), 549-579. · Zbl 0682.45001 · doi:10.1216/JIE-1988-1-4-549