zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Iterative approaches to convex feasibility problems in Banach spaces. (English) Zbl 1139.47056
Summary: The convex feasibility problem (CFP) of finding a point in the nonempty intersection $\bigcap_{i=1}^{N}C_{i}$ is considered, where $N\geq 1$ is an integer and each $C_{i}$ is assumed to be the fixed point set of a nonexpansive mapping $T_{i}\colon X\rightarrow X$ with $X$ a Banach space. It is shown that the iterative scheme $$x_{n+1}=\lambda_{n+1}\,y+(1-\lambda_{n+1})T_{n+1}\,x_{n},$$ where $T_{k}=T_{k\bmod N}$ if $k>N$, is strongly convergent to a solution of (CFP) provided that the Banach space $X$ either is uniformly smooth or is reflexive and has a weakly continuous duality map, and provided that the sequence $\{\lambda_{n}\}$ satisfies certain conditions. The limit of $\{x_{n}\}$ is located as $Q(y)$, where $Q$ is the sunny nonexpansive retraction from $X$ onto the common fixed point set of the $T_{i}$’s.

47N10Applications of operator theory in optimization, convex analysis, programming, economics
90C25Convex programming
47J25Iterative procedures (nonlinear operator equations)
47H09Mappings defined by “shrinking” properties
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
90C48Programming in abstract spaces
Full Text: DOI
[1] Bauschke, H. H.: The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space. J. math. Anal. appl. 202, 150-159 (1996) · Zbl 0956.47024
[2] Bauschke, H. H.; Borwein, J. M.: On projection algorithms for solving convex feasibility problems. SIAM rev. 38, 1367-1426 (1996)
[3] Browder, F. E.: Convergence of approximants to fixed points of nonexpansive non-linear mappings in Banach spaces. Arch. ration. Mech. anal. 24, 82-90 (1967) · Zbl 0148.13601
[4] Bruck, R. E.: Nonexpansive projections on subsets of Banach spaces. Pac. J. Math. 47, 341-355 (1973) · Zbl 0274.47030
[5] Bruck, R. E.: On the convex approximation property and the asymptotic behaviour of nonlinear contractions in Banach spaces. Isr. J. Math. 38, 304-314 (1981) · Zbl 0475.47037
[6] Censor, Y.; Zenios, S. A.: Parallel optimization, theory, algorithms, and applications. (1996) · Zbl 0945.90064
[7] Cioranescu, I.: Geometry of Banach spaces, duality mappings and nonlinear problems. (1990) · Zbl 0712.47043
[8] Combettes, P. L.: The convex feasibility problem in image recovery. Advances in imaging and electron physics 95, 155-270 (1996)
[9] Combettes, P. L.: Hilbertian convex feasibility problemconvergence of projection methods. Appl. math. Optim. 35, 311-330 (1997) · Zbl 0872.90069
[10] Crombez, G.: Viewing parallel projection methods as sequential ones in convex feasibility problems. Trans. am. Math. soc. 347, 2575-2583 (1995) · Zbl 0846.46010
[11] Crombez, G.: Finding projections onto the intersection of convex sets in Hilbert spaces. Numer. funct. Anal. optim. 16, 637-652 (1995) · Zbl 0827.46017
[12] Deutsch, F.; Yamada, I.: Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings. Numer. funct. Anal. optim. 19, 33-56 (1998) · Zbl 0913.47048
[13] Diestel, J.: Geometry of Banach spaces-selected topics. Lecture notes in mathematics 485 (1975) · Zbl 0307.46009
[14] Goebel, K.; Kirk, W. A.: Topics in metric fixed point theory. Cambridge studies in advanced mathematics 28 (1990) · Zbl 0708.47031
[15] Goebel, K.; Reich, S.: Uniform convexity, hyperbolic geometry, and nonexpansive mappings. (1984) · Zbl 0537.46001
[16] Halpern, B.: Fixed points of nonexpanding maps. Bull. am. Math. soc. 73, 957-961 (1967) · Zbl 0177.19101
[17] Kotzer, T.; Cohen, N.; Shamir, J.: Image restoration by a novel method of parallel projection onto constraint sets. Opt. lett. 20, 1172-1174 (1995)
[18] Kotzer, T.; Cohen, N.; Shamir, J.: Applications of serial- and parallel-projection methods to correlation filter design. Appl. opt. 34, 3883-3895 (1995)
[19] Lim, T. C.; Xu, H. K.: Fixed point theorems for asymptotically nonexpansive mappings. Nonlinear anal. 22, 1345-1355 (1994) · Zbl 0812.47058
[20] Lions, P. L.: Approximation de points fixes de contractions. CR acad. Sci. sèr. A-B Paris 284, 1357-1359 (1977) · Zbl 0349.47046
[21] O’hara, J. G.; Pillay, P.; Xu, H. K.: Iterative approaches to finding nearest common fixed point of nonexpansive mappings in Hilbert spaces. Nonlinear anal. 54, 1417-1426 (2003) · Zbl 1052.47049
[22] Reich, S.: Asymptotic behavior of contractions in Banach spaces. J. math. Anal. appl. 44, 57-70 (1973) · Zbl 0275.47034
[23] Reich, S.: Some fixed point problems. Atti accad. Naz. lincei 57, 194-198 (1974) · Zbl 0329.47019
[24] Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. math. Anal. appl. 75, 287-292 (1980) · Zbl 0437.47047
[25] Reich, S.: Some problems and results in fixed point theory. Contemp. math. 21, 179-187 (1983) · Zbl 0531.47048
[26] Reich, S.: Approximating fixed points of nonexpansive mappings. Panam. math. J. 4, No. 2, 23-28 (1994) · Zbl 0856.47032
[27] Sezan, M. I.; Stark, H.: Application of convex projection theory to image recovery in tomography and related areas. Image recoverytheory and applications, 415-462 (1987)
[28] Shimizu, T.; Takahashi, W.: Strong convergence to common fixed points of families of nonexpansive mappings. J. math. Anal. appl. 211, 71-83 (1997) · Zbl 0883.47075
[29] Shioji, N.; Takahashi, W.: Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces. Proc. am. Math. soc. 125, 3641-3645 (1997) · Zbl 0888.47034
[30] Wittmann, R.: Approximation of fixed points of nonexpansive mappings. Arch. math. 58, 486-491 (1992) · Zbl 0797.47036
[31] Xu, H. K.: Iterative algorithms for nonlinear operators. J. London math. Soc. 66, 240-256 (2002) · Zbl 1013.47032
[32] Xu, H. K.: An iterative approach to quadratic optimization. J. optim. Theory appl. 116, No. 3, 659-678 (2003) · Zbl 1043.90063
[33] Yamada, I.; Ogura, N.; Yamashita, Y.; Sakaniwa, K.: Quadratic approximation of fixed points of nonexpansive mappings in Hilbert spaces. Numer. funct. Anal. optim. 19, 165-190 (1998) · Zbl 0911.47051
[34] Youla, D. C.; Webb, H.: Image restoration by the method of convex projectionspart I --- theory. IEEE trans. Med. imaging 1, 81-94 (1982)