×

CAT(0) groups with specified boundary. (English) Zbl 1139.57020

Summary: We specify exactly which groups can act geometrically on CAT(0) spaces whose visual boundary is homeomorphic to either a circle or a suspension of a Cantor set.

MSC:

57M60 Group actions on manifolds and cell complexes in low dimensions
20F65 Geometric group theory
PDF BibTeX XML Cite
Full Text: DOI arXiv EMIS

References:

[1] A Alexandrov, A theorem on triangles in a metric space and some applications, Trudy Mat. Inst. Steks. 38 (1951) 5
[2] W Ballmann, M Gromov, V Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics 61, Birkhäuser (1985) · Zbl 0591.53001
[3] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren series 319, Springer (1999) · Zbl 0988.53001
[4] A Casson, D Jungreis, Convergence groups and Seifert fibered \(3\)-manifolds, Invent. Math. 118 (1994) 441 · Zbl 0840.57005
[5] D Gabai, Convergence groups are Fuchsian groups, Ann. of Math. \((2)\) 136 (1992) 447 · Zbl 0785.57004
[6] R Geoghegan, P Ontaneda, Boundaries of Cocompact Proper \(\mathrm{CAT}(0)\) Spaces, preprint · Zbl 1124.20026
[7] S M Gersten, Quasi-isometry invariance of cohomological dimension, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 411 · Zbl 0805.20043
[8] E Ghys, P de la Harpe, Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Mathematics 83, Birkhäuser (1990) · Zbl 0731.20025
[9] M Gromov, Hyperbolic groups, Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 · Zbl 0634.20015
[10] M Kapovich, B Kleiner, Hyperbolic groups with low-dimensional boundary, Ann. Sci. École Norm. Sup. \((4)\) 33 (2000) 647 · Zbl 0989.20031
[11] K E Ruane, Dynamics of the action of a \(\mathrm{CAT}(0)\) group on the boundary, Geom. Dedicata 84 (2001) 81 · Zbl 0984.20027
[12] K Ruane, \(\mathrm{CAT}(0)\) boundaries of truncated hyperbolic space, Topology Proc. 29 (2005) 317 · Zbl 1090.53040
[13] J R Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. (2) 88 (1968) 312 · Zbl 0238.20036
[14] G A Swarup, On the cut point conjecture, Electron. Res. Announc. Amer. Math. Soc. 2 (1996) 98 · Zbl 0868.20032
[15] E L Swenson, A cut point theorem for \(\mathrm{CAT}(0)\) groups, J. Differential Geom. 53 (1999) 327 · Zbl 1038.20029
[16] P Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988) 1 · Zbl 0644.30027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.