zbMATH — the first resource for mathematics

Analysis of a quasicontinuum method in one dimension. (English) Zbl 1139.74004
Summary: The quasicontinuum method is a coarse-graining technique for reducing the complexity of atomistic simulations in a static and quasistatic setting. In this paper we aim to give a detailed a priori and a posteriori error analysis for a quasicontinuum method in one dimension. We consider atomistic models with Lennard-Jones type long-range interactions and a QC formulation which incorporates several important aspects of practical QC methods. First, we prove the existence, the local uniqueness and the stability with respect to a discrete \(W^{1,\infty}\)-norm of elastic and fractured atomistic solutions. We use a fixed point argument to prove the existence of a quasicontinuum approximation which satisfies a quasi-optimal a priori error bound. We then reverse the role of exact and approximate solution and prove that, if a computed quasicontinuum solution is stable in a sense that we make precise and has a sufficiently small residual, there exists a ‘nearby’ exact solution which it approximates, and we give an a posteriori error bound. We stress that, despite the fact that we use linearization techniques in the analysis, our results apply to genuinely nonlinear situations.

74A25 Molecular, statistical, and kinetic theories in solid mechanics
74S99 Numerical and other methods in solid mechanics
Full Text: DOI EuDML
[1] X. Blanc, C. Le Bris and F. Legoll, Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics: the convex case. Acta Math. Appl. Sinica English Series23 (2007) 209-216. · Zbl 1177.65091 · doi:10.1007/s10255-007-0364-5
[2] A. Braides and M.S. Gelli, Continuum limits of discrete systems without convexity hypotheses. Math. Mech. Solids7 (2002) 41-66. · Zbl 1024.74004 · doi:10.1177/1081286502007001229
[3] A. Braides, G. Dal Maso and A. Garroni, Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch. Ration. Mech. Anal.146 (1999) 23-58. · Zbl 0945.74006 · doi:10.1007/s002050050135
[4] A. Braides, A.J. Lew and M. Ortiz, Effective cohesive behavior of layers of interatomic planes. Arch. Ration. Mech. Anal.180 (2006) 151-182. Zbl1093.74013 · Zbl 1093.74013 · doi:10.1007/s00205-005-0399-9
[5] F. Brezzi, J. Rappaz and P.-A. Raviart, Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions. Numer. Math.36 (1980) 1-25. · Zbl 0488.65021 · doi:10.1007/BF01395985 · eudml:132686
[6] M. Dobson and M. Luskin, Analysis of a force-based quasicontinuum approximation. ESAIM: M2AN42 (2008) 113-139. Zbl1140.74006 · Zbl 1140.74006 · doi:10.1051/m2an:2007058 · eudml:194397
[7] G. Dolzmann, Optimal convergence for the finite element method in Campanato spaces. Math. Comp.68 (1999) 1397-1427. · Zbl 0929.65096 · doi:10.1090/S0025-5718-99-01175-8
[8] W. E and B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci.1 (2003) 87-132. · Zbl 1093.35012 · doi:10.4310/CMS.2003.v1.n1.a8 · euclid:cms/1118150402
[9] W. E and P. Ming, Analysis of multiscale methods. J. Comput. Math.22 (2004) 210-219. Special issue dedicated to the 70th birthday of Professor Zhong-Ci Shi. Zbl1104.00302 · Zbl 1104.00302
[10] W. E and P. Ming, Analysis of the local quasicontinuum method, in Frontiers and prospects of contemporary applied mathematics, Ser. Contemp. Appl. Math. CAM6, Higher Ed. Press, Beijing (2005) 18-32. Zbl1188.74019 · Zbl 1188.74019 · ebooks.worldscinet.com
[11] D.J. Higham, Trust region algorithms and timestep selection. SIAM J. Numer. Anal.37 (1999) 194-210. Zbl0945.65068 · Zbl 0945.65068 · doi:10.1137/S0036142998335972
[12] J.E. Jones, On the Determination of Molecular Fields. III. From Crystal Measurements and Kinetic Theory Data. Proc. Roy. Soc. London A.106 (1924) 709-718.
[13] B. Lemaire, The proximal algorithm, in New methods in optimization and their industrial uses (Pau/Paris, 1987), of Internat. Schriftenreihe Numer. Math.87, Birkhäuser, Basel (1989) 73-87. · Zbl 0692.90079
[14] P. Lin, Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model. Math. Comp.72 (2003) 657-675. Zbl1010.74003 · Zbl 1010.74003 · doi:10.1090/S0025-5718-02-01456-4
[15] P. Lin, Convergence analysis of a quasi-continuum approximation for a two-dimensional material without defects. SIAM J. Numer. Anal.45 (2007) 313-332 (electronic). · Zbl 1220.74010 · doi:10.1137/050636772
[16] R.E. Miller and E.B. Tadmor, The quasicontinuum method: overview, applications and current directions. J. Computer-Aided Mater. Des.9 (2003) 203-239.
[17] P.M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev.34 (1929) 57-64. · JFM 55.0539.02
[18] M. Ortiz, R. Phillips and E.B. Tadmor, Quasicontinuum analysis of defects in solids. Philos. Mag. A73 (1996) 1529-1563.
[19] C. Ortner, Gradient flows as a selection procedure for equilibria of nonconvex energies. SIAM J. Math. Anal.38 (2006) 1214-1234 (electronic). · Zbl 1117.35004 · doi:10.1137/050643982
[20] C. Ortner and E. Süli, A posteriori analysis and adaptive algorithms for the quasicontinuum method in one dimension. Technical Report NA06/13, Oxford University Computing Laboratory (2006).
[21] C. Ortner and E. Süli, Discontinuous Galerkin finite element approximation of nonlinear second-order elliptic and hyperbolic systems. SIAM J. Numer. Anal.45 (2007) 1370-1397. Zbl1146.65070 · Zbl 1146.65070 · doi:10.1137/06067119X
[22] M. Plum, Computer-assisted enclosure methods for elliptic differential equations. Linear Algebra Appl.324 (2001) 147-187. Special issue on linear algebra in self-validating methods. Zbl0973.65100 · Zbl 0973.65100 · doi:10.1016/S0024-3795(00)00273-1
[23] L. Truskinovsky, Fracture as a phase transformation, in Contemporary research in mechanics and mathematics of materials, R.C. Batra and M.F. Beatty Eds., CIMNE (1996) 322-332.
[24] R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comp.62 (1994) 445-475. Zbl0799.65112 · Zbl 0799.65112 · doi:10.2307/2153518
[25] E. Zeidler, Nonlinear functional analysis and its applications. I Fixed-point theorems. Springer-Verlag, New York (1986). Translated from the German by Peter R. Wadsack. Zbl0583.47050 · Zbl 0583.47050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.